838 research outputs found

    The fluid dynamics of swimming by jumping in copepods

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Royal Society for personal use, not for redistribution. The definitive version was published in Journal of the Royal Society Interface 8 (2011): 1090-1103, doi:10.1098/rsif.2010.0481.Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic predators. We developed an impulsive stresslet model to quantify the jump-imposed flow disturbance. The predicted flow consists of two counterrotating viscous vortex rings of similar intensity, one in the wake and one around the body of the copepod. We showed that the entire jumping flow is spatially limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods in jumpswimming are much less detectable by rheotactic predators. The present impulsive stresslet model improves a previously published impulsive Stokeslet model that applies only to the wake vortex.This work was supported by National Science Foundation grants NSF OCE-0352284 & IOS-0718506 and an award from WHOI’s Ocean Life Institute to H.J and by grants from the Danish Research Council for independent research and the Niels Bohr Foundation to T.K

    Ion holes in the hydrodynamic regime in ultracold neutral plasmas

    Get PDF
    We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma

    Thirty-five year mortality following receipt of SV40- contaminated polio vaccine during the neonatal period

    Get PDF
    Early poliovirus vaccines, both inactivated and live attenuated, were inadvertently contaminated with simian virus 40 (SV40), a monkey virus known to be oncogenic for newborn hamsters. Although large epidemiologic studies have not identified an elevated cancer risk in persons who received SV40-contaminated vaccines, fragments of SV40 DNA have recently been identified in certain human tumours. We report the follow-up of a cohort of 1073 persons, unique because they received SV40-contaminated poliovirus vaccines as newborns in 1961–63. A previous report of the status of these subjects as of 1977–79 identified 15 deaths, none due to cancer. The present study utilized the National Death Index to identify deaths in the cohort for the years 1979–96. Expected deaths were calculated from Cleveland area sex-, age-, race- and year-specific mortality rates. Increased mortality from all causes was not found. 4 deaths from cancer were found compared to 3.16 expected (P= 0.77). However, 2 deaths from testicular cancer occurred, compared to 0.05 expected (P= 0.002), which may be a chance finding due to multiple comparisons. There were 2 deaths due to leukaemia, a non-significant finding, and no deaths due to tumours of the types putatively associated with SV40. Although these results are, for the most part, consistent with other negative epidemiologic investigations of risks from SV40-contaminated vaccines, further study of testicular cancer may be warranted, and it will be important to continue monitoring this cohort which is now reaching middle-age. © 2001 Cancer Research Campaig

    Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory

    Get PDF
    The classical experiments on turbulent friction in rough pipes were performed by J. Nikuradse in the 1930's. Seventy years later, they continue to defy theory. Here we model Nikuradse's experiments using the phenomenological theory of Kolmog\'orov, a theory that is widely thought to be applicable only to highly idealized flows. Our results include both the empirical scalings of Blasius and Strickler, and are otherwise in minute qualitative agreement with the experiments; they suggest that the phenomenological theory may be relevant to other flows of practical interest; and they unveil the existence of close ties between two milestones of experimental and theoretical turbulence.Comment: Accepted for publication in PRL; 4 pages, 4 figures; revised versio

    Resilience in Virginia: Outlook 2021

    Full text link
    VCPC\u27s October webinar included an update on Virginia’s participation in the Regional Greenhouse Gas Initiative and the implementation of Executive Order 24; remarks from the Speaker of the House of Delegates, Eileen Filler -Corn, and a legislative panel discussed resilience issues for the upcoming 2021 Virginia General Assembly session. VCPC was honored to host Governor Ralph Northam for Closing Remarks

    Resilience in Virginia: Outlook 2021

    Full text link
    VCPC\u27s October webinar included an update on Virginia’s participation in the Regional Greenhouse Gas Initiative and the implementation of Executive Order 24; remarks from the Speaker of the House of Delegates, Eileen Filler -Corn, and a legislative panel discussed resilience issues for the upcoming 2021 Virginia General Assembly session. VCPC was honored to host Governor Ralph Northam for Closing Remarks

    Systematically Variable Planktonic Carbon Metabolism Along a Land-To-Lake Gradient in a Great Lakes Coastal Zone

    Get PDF
    During the summers of 2002–2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L−1 day−1, respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and −33 ± 15 µg C L−1day−1, respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles
    • …
    corecore