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ABSTRACT 

Copepods swim either continuously by vibrating their feeding appendages or erratically 

by repeatedly beating their swimming legs resulting in a series of small jumps. The two 

swimming modes generate different hydrodynamic disturbances and therefore expose the 

swimmers differently to rheotactic predators.  We developed an impulsive stresslet model to 

quantify the jump-imposed flow disturbance. The predicted flow consists of two counter-

rotating viscous vortex rings of similar intensity, one in the wake and one around the body of 

the copepod. We showed that the entire jumping flow is spatially limited and temporally 

ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady 

swimming generates two well-extended long-lasting momentum jets both in front of and 

behind the swimmer, as suggested by the well-known steady stresslet model.  Based on the 

observed jump-swimming kinematics of a small copepod Oithona davisae, we further 

showed that jump-swimming produces a hydrodynamic disturbance with much smaller 

spatial extension and shorter temporal duration than that produced by a same-size copepod 

cruising steadily at the same average translating velocity. Hence, small copepods in jump-

swimming are much less detectable by rheotactic predators.  The present impulsive stresslet 

model improves a previously published impulsive Stokeslet model that applies only to the 

wake vortex. 

Key words: copepod jump, viscous vortex ring, impulsive stresslet, impulsive 

Stokeslet, hydrodynamic camouflage, non-dimensional ‘jump number’ 
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1. INTRODUCTION 

Planktonic organisms create water flows at the scale of their body as they move and 

feed. They generate feeding/swimming currents by rapidly beating their flagella, cilia or 

cephalic appendages more or less continuously. Or they may make instantaneous, short-

lasting jumps to relocate, escape predators or attack prey (e.g. Buskey et al. 2002; Jakobsen 

2001, 2002; Fenchel & Hansen 2006; Kiørboe et al. 2009), which in some cases may 

generate toroidal flow structures in their wake, as has been described for copepods (Yen & 

Strickler 1996; van Duren & Videler 2003; Kiørboe et al. 2010a). Finally, even when 

zooplankters do not move their appendages, cilia or flagella, they may sink passively, leading 

to flow passing around their body. It is of great relevance to investigate these small-scale 

biogenic fluid dynamical phenomena as they are related to and have implications for the 

various survival tasks of the plankters, such as feeding, nutrient uptake, predator avoidance, 

mating and signaling (for reviews see Strickler 1984, 1985; Yen 2000; Visser 2001; Jiang & 

Osborn 2004; Magar & Pedley 2005; Short et al. 2006; Kiørboe 2008). Specifically, 

zooplankters with different feeding and motility behaviors generate different hydrodynamic 

disturbances and therefore expose themselves differently to rheotactic predators. Quantitative 

characterization of these different hydrodynamic disturbances allows a mechanistic 

understanding of the (probably) different levels of predation risk faced by these zooplankters. 

Planktonic copepods, arguably the most abundant metazoans in the ocean (Humes 

1994), swim either by continuously vibrating their feeding appendages, which results in a 

rather constant propulsion, or they use their swimming legs, which leads to sequences of 

small jumps.  Continuous swimming by vibrating the feeding appendages is common among 

calanoid copepods that generate a feeding current. In contrast, ambush feeding copepods, 

mainly among the small cyclopoid copepods, do not generate a feeding current, but swim by 

sequentially striking the swimming legs posteriorly and by repeating this sequence at short 
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intervals (e.g. Strickler 1975; Morris et al. 1990). This leads to a very unsteady, erratic 

motion, which probably generates a hydrodynamic disturbance much different from that of a 

continuously swimming copepod. The purpose of this study is to compare the hydrodynamic 

signal generated by these two fundamentally different propulsion mechanisms in 

zooplankton, using copepods as an example. 

Several analytic solutions from classical fluid dynamics have previously been applied 

to investigate low-Reynolds-number flows created by small continuously moving plankters. 

For example, the solution of the Stokes flow associated with a steady point force was used to 

model the feeding current created by a negatively buoyant, stationary/hovering copepod 

(Tiselius & Jonsson 1990). The same authors also modeled the flow around a steadily sinking 

copepod using the well-known Stokes solution for the flow associated with a steadily 

translating sphere.  Later, an analytic model of a negatively buoyant swimming copepod 

(hovering and free-sinking as special cases) was developed based on a linear combination of 

the Stokes flow around a stationary solid sphere and the Stokes flow owing to a point force 

external to the same sphere (Jiang et al. 2002; Jiang & Strickler 2007). This model separates 

the copepod main body resistance from the thrusting effect of the beating appendages and 

therefore has the ability to reproduce the major feeding/swimming current patterns that have 

been observed so far. 

However, these solutions to the steady Stokes flow equations cannot be applied to the 

intrinsic unsteady flows associated with plankters that swim by jumping because these are of 

an impulsive nature. Jumping plankters impart only brief and localized momentum to the 

surrounding water during short-lasting power strokes. The localized impulsive forcing 

exerted by the thrusting appendages (e.g. copepods) or membranelles (e.g. the jumping ciliate 

Mesodinium rubrum, Fenchel & Hansen 2006) will stop as soon as the power strokes are 

completed and the flow so created will decay because of viscosity. 
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There are few previous attempts to develop theoretical hydrodynamic models for the 

low-Reynolds-number unsteady flow associated with jumping plankton, even though jumping 

is a very common motility mode among both protozoan (Jakobsen 2001; Fenchel & Hansen 

2006) and metazoan plankton (Horridge & Boulton 1967; Strickler 1975; Tiselius & Jonsson 

1990; Svensen & Kiørboe 2000; Paffenhöfer & Mazzocchi 2002). Here, we develop such a 

model by taking into account the two characteristics of the jumping flow: namely, 

impulsiveness and viscous decay.  We develop our model with jumping copepods in mind, 

but the model has wider application. It is well known that jumping copepods leave toroidal 

flow structures in their wake (Yen & Strickler 1996; van Duren & Videler 2003), and we 

previously developed an impulsive Stokeslet model for such viscous wake vortex rings 

(Kiørboe et al. 2010a). However, an additional vortex ring develops around the decelerating 

body, and in a typical repositioning jump of a millimeter-size copepod, the two rings are of 

similar intensity and opposite direction (figure 1a; Kiørboe et al. 2010a). We here present an 

impulsive stresslet model that describes the entire flow field and includes both vortex rings 

generated by the jumping copepod. We first compare the two theoretical models, and then 

apply the present impulsive stresslet model to observations of the kinematics of swimming in 

a small cyclopoid copepod, Oithona davisae. We compare the modeled flow for a jump-

swimming copepod to the flow generated by a steadily cruising one and show that the 

hydrodynamic disturbance generated by the former has a much smaller spatial extension and 

temporal duration than that generated by the latter, suggesting that jump-swimming is a 

hydrodynamically quiet propulsion mode. 

2. METHODS 

2.1. Video observation 

We observed the swimming behavior of males of the cyclopoid copepod Oithona 

davisae (prosome length 0.3 mm) using high speed video (400 or 1900 frames s-1). Males, but 
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not females, of this species frequently swim when searching for females (Kiørboe 2007), and 

they swim using their swimming legs, not their feeding appendages. Animals were taken 

from our continuous culture and placed in ~100 ml aquaria. Light from a 50 W halogen lamp 

was guided through a collimator lens and the aquarium towards the camera, thus providing 

shadow images of the copepods. The camera (Phantom v 4.2 Monochrome) was equipped 

with lenses to produce fields of view of ~33 mm2 when filming at the high frame rate, or 

~1515 mm2 when filming at the lower frame rate. At the low frame rate and low 

magnification we placed a mirror in the diagonal of the aquarium; by following both the 

image and the mirror image of the animals, we could reconstruct their 3-dimensional (3D) 

movement paths. When filming at the higher magnification, we selected sequences where the 

animal was moving in the view plane perpendicular to the camera. 

Selected video sequences (n = 18) showing one copepod moving were analyzed frame 

by frame, either semi-automatically using ImageJ or automatically using the particle tracking 

software LabTrack (DiMedia, Kvistgård, Denmark). The position of the animal was followed 

over time, allowing us to describe the temporal variation in move speed. At the higher 

magnification, we also noted the duration of the power stroke of the swimming legs in 4-6 

beat cycles per animal. 

Observations of the flow field generated by the repositioning jumps of a different 

copepod (Acartia tonsa) and visualized using particle image velocimetry (PIV) were taken 

from Kiørboe et al. (2010a) for comparison with model predictions. 

2.2. The impulsive stresslet model 

Using PIV, we have recently measured the flow fields imposed by copepods that 

performed repositioning jumps (Kiørboe et al. 2010a). Being approximately axisymmetric, a 

typical such measured flow field consists of two counter-rotating viscous vortex rings of 

similar intensity, one in the wake and one around the body of the copepod (figure 1a). The 
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wake vortex is generated owing to the momentum applied almost impulsively to the water by 

the rapid backward kick of the swimming legs; almost simultaneously but slightly delayed, 

the counter-rotating body vortex is generated owing to the oppositely directed momentum of 

equal magnitude paid back to the water by the forward moving copepod body. Here we 

consider the two rings as a whole system and describe their behavior using an impulsive 

stresslet model (figure 1b). 

Equations of the impulsive stresslet – An impulsive stresslet consists of two point 

momentum sources of equal magnitude (I, where  is the mass density of the fluid and I the 

hydrodynamic impulse), acting synchronously in opposite direction and separated by distance 

 (figure 1b). Each momentum source acts impulsively for a very short period of time 

formally represented by the Dirac delta function (t). The definition of the strength of the 

impulsive stresslet is ܯ ൌ limఌ՜଴, ூ՜ஶ ߝܫ ൌ   .with [M] = L5T-1 for 3D flows ݐ݊ܽݐݏ݊݋ܿ

Vorticity (߱థ) and streamfunction (߰థ) for the above-described flow have been obtained in 

Stokes approximation (Afanasyev 2004): 

 ߱థ ൌ ெ ௫ ௥

ଷଶ గయ/మ ሺఔ௧ሻళ/మ  ݁ିకమ
    (2.1a) 

 ߰థ ൌ െ ଷ ெ ௫  ௥మ

ଶ గయ/మ ሺ௫మା௥మሻఱ/మ  ቂെ √గ

ଶ
erfሺߦሻ ൅ కమି݁ߦ

ቀ1 ൅ ଶ

ଷ
 ଶቁቃ (2.1b)ߦ

where ߦ ൌ ට௫మା௥మ

ସఔ௧
,  the kinematic viscosity, and the error function erfሺߦሻ ൌ ଶ

√గ
׬ ݁ି௬మ

ݕ݀
క

଴ . 

The solution is axisymmetric and independent of the azimuthal coordinate  in the cylindrical 

polar coordinate system (x, r, ) (figure 1b). The components of velocity in the meridian 

plane are given by 

ݑ  ؠ ଵ

௥

డటഝ

డ௥
ൌ ெ

ଶగయ/మ

௫

ሺ௫మା௥మሻళ/మ ሾሺ2ݔଶ െ ܥଶሻݎ3 ൅  ሿ  (2.2a)ܦଶݎ

ݒ  ؠ െ
ଵ

௥

డటഝ

డ௫
ൌ െ

ெ

ଶగయ/మ

௥

ሺ௫మା௥మሻళ/మ ሾሺݎଶ െ ܥଶሻݔ4 ൅  ሿ (2.2b)ܦଶݔ
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where u and v are the velocity components in the axial (x-) and the radial (r-) direction, 

respectively, ܥ ൌ 3 ቂെ √గ

ଶ
erfሺߦሻ ൅ కమି݁ߦ

ቀ1 ൅ ଶ

ଷ
ܦ ଶቁቃ andߦ ൌ െ4ߦହ݁ିకమ

. 

Viscous decay − Integrating ߱థ (equation 2.1a) over one half of the meridian plane 

(e.g. x  0) where the vorticity is one-signed leads to a simple formula for viscous decay of 

circulation of the one-signed vorticity: 

 Γ௫ஹ଴ሺݐሻ ؠ ׬ ׬ ߱థ ݔ݀ ݎ݀
ାஶ

଴ ൌ ெ

଼గయ/మሺఔ௧ሻయ/మ

ାஶ
଴   (2.3) 

The hydrodynamic impulse of the one-signed vorticity satisfies: 

ሻݐ௫ஹ଴ሺܫ  ؠ ߨ ׬ ׬ ߱థ ݔଶ݀ݎ ݎ݀
ାஶ

଴
ାஶ

଴ ൌ ெ

√ସగఔ௧
  (2.4) 

It is obvious that Γ௫ஹ଴ሺݐሻ ൅ Γ௫ழ଴ሺݐሻ ൌ 0 and ܫ௫ஹ଴ሺݐሻ ൅ ሻݐ௫ழ଴ሺܫ ൌ 0. 

Asymptotic analysis for finding spatial extension and temporal duration of the flow − 

At small time, the flow far field (i.e.  >> 1) is approximately irrotational and behaves as: 

ݑ  ൌ ଷெ

ସగ

௫൫ଶ௫మିଷ௥మ൯

ሺ௫మା௥మሻళ/మ     (2.5a) 

ݒ  ൌ ଷெ

ସగ

௥൫ସ௫మି௥మ൯

ሺ௫మା௥మሻళ/మ    (2.5b) 

The associated velocity magnitude is: 

 ܷ ؠ ଶݑ√ ൅ ଶݒ ൌ ଷெ

ସగ

√ସ௫రା௥ర

ሺ௫మା௥మሻయ   (2.6) 

From equation (2.6), two lengths (denoted Rx
* and Rr

*) are formed to define the size of the 

domain over which the flow velocity magnitude is greater than a threshold velocity U*: 

Setting r = 0 leads to 

 ܴ௫
כ ൌ ቀ

ଷ

ଶగ

ெ

௎כቁ
ଵ/ସ

    (2.7a) 

and setting x = 0 leads to 

 ܴ௥
כ ൌ ቀ

ଷ

ସగ

ெ

௎כቁ
ଵ/ସ

    (2.7b) 



 
9 

 

Asymptotic analysis at large time (i.e.   0) is too complicated to provide a formula 

for calculating the time t* after which the whole flow field is below U*. However, 

dimensional analysis together with numerical calculation using equation (2.2a, b) suggests a 

scaling relationship: 

 
ௌ

ௌכ ൌ ݂ ቀ
௧

௧כቁ     (2.8a) 

כܵ  ൎ 0.476 ܴ௫
௥ܴכ

כ ൎ 0.868 ቀ
ெ

௎כቁ
ଵ/ଶ

   (2.8b) 

כݐ  ൎ ଴.଴଺଼


ቀ

ெ

௎כቁ
ଵ/ଶ

    (2.8c) 

where S is the area of influence defined as the area in the meridian plane, within which the 

flow velocity magnitude is greater than U*. A rheotactic predator is likely to perceive the 

prey-induced flow velocity magnitude (Kiørboe & Visser 1999) and, hence, this area is a 

measure of the encounter cross section of the copepod prey. The scaling relationship has been 

numerically determined and plotted (figure 2a); the hydrodynamic signal quantified as the 

area within which the induced flow velocity magnitude exceeds U* initially attains its 

maximum (i.e. S*) and then decays until dies out completely after t*. Both S* and t* depend on 

M/U* only. 

Translation of the vortices − The impulsive stresslet initially sets up an irrotational flow 

everywhere except at its application point where there exist two opposite-signed vorticity 

singularities (figure 3a). Both singularities diminish and the associated vorticities diffuse 

away from the application point as time goes on (figure 3b, c, d; electronic supplementary 

material, appendix movie S1). The coordinates of the two vorticity maxima evolve as: 

ሻݐఠሺݔ  ൌ  (2.9a)    ݐ2√ט

ሻݐఠሺݎ  ൌ √2ݐ    (2.9b) 

and the two flow stagnation points (vortex centers) occur at: 

ሻݐ௨ሺݔ  ൌ  (2.10a)    ݐ√1.86326ט
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ሻݐ௨ሺݎ  ൌ |ሻݐ௨ሺݔ| 2√ ൌ 2.63505√ݐ   (2.10b) 

Therefore, the vorticity maxima separate from the flow stagnation points as time goes on. 

2.3. Analysis of the PIV flow data using the impulsive stresslet model 

To test whether the flow predicted by the impulsive stresslet model is a good 

approximation of the flow field associated with a copepod repositioning jump, we fitted by 

nonlinear regression the decay phase of the observed wake vortex circulation (Kiørboe et al. 

2010a) to equation (2.3) subsequent to a virtual time origin t0: 

 Γሺݐሻ ൌ ெfitted

଼గయ/మሾఔሺ௧ି௧బሻሿయ/మ    (2.11) 

We then compared the fitted impulsive stresslet strength, Mfitted, with that directly calculated 

from jump kinematics: 

Mmeasured = Umax × Vcopepod × Djump   (2.12) 

where Umax is maximum speed attained by the copepod, Djump is the distance travelled by the 

copepod during a jump, the copepod body volume, Vcopepod, is 4/3 π η2 a3, and a half the 

prosome length, η = 0.38 the copepod aspect ratio, assuming the shape of a prolate spheroid 

with the long axis equal to the prosome length, L, and the short axes equal to η × L. 

2.4. Brief description of a previously published impulsive Stokeslet model 

The impulsive stresslet model was worked out after we had published the Kiørboe et al. 

(2010a) paper, where we constructed an impulsive Stokeslet model to describe the wake 

vortex ring left behind a repositioning-by-jumping copepod. Unlike the impulsive stresslet 

model, the impulsive Stokeslet model did not consider the interaction between the wake 

vortex ring and the body vortex ring.  Here, we recapitulate some equations from the 

impulsive Stokeslet model for comparing the two models (figure 2). 

An impulsive Stokeslet consists of a point momentum source of magnitude ρI acting 

impulsively for a very short period of time formally represented by δ(t) (figure 1c). [I] = L4T-1 



 
11 

 

for 3D flows. Similar to the impulsive stresslet model, the scaling relationship for the area of 

influence, S, is: 

 
ௌ

ௌכ ൌ ݃ ቀ
௧

௧כቁ     (2.13a) 

כܵ  ൎ 0.385 ቀ
ூ

௎כቁ
ଶ/ଷ

    (2.13b) 

כݐ  ൌ ଵ

ସ
ቀ

ଶ

ଷ

ூ

௎כቁ
ଶ/ଷ

    (2.13c) 

The scaling relationship has been numerically determined and plotted (figure 2a). The model 

parameter I (the hydrodynamic impulse) can be estimated as: 

Imeasured = Umax × Vcopepod    (2.14) 

3. RESULTS 

3.1. Jump-swimming kinematics 

Jump-swimming consists of a sequence of small jumps: the swimming legs are pushed 

posteriorly in power strokes, one after the other, and returned all at the same time, and the 

sequence is repeated at an average frequency of 21.5 Hz (table 1; electronic supplementary 

material, appendix movie S2). This leads to a highly fluctuating velocity: short bursts with 

speeds of up to 30-50 mm s-1 during power strokes of 7.2 ms duration on average and 

interrupted by long pauses, resulting in an average propulsion speed of 8 mm s-1 (table 1; 

figure 4). The individual jumps resemble repositioning, attack or escape jumps in this species 

(Kiørboe et al. 2010b), but they differ in the phase lag between individual swimming legs: 

near 90° in escape and attack jumps, but only between 30 and 60° for the swimming jumps 

(i.e. the legs are closer to one another) (figure 5). As a consequence, the average forward 

movement is only a little more than 1 body length for a swimming jump (0.375 mm or 1.25 

body lengths, table 1), whereas it is near 2 body lengths for repositioning, escape and attack 

jumps (Kiørboe et al. 2010b). 

3.2. The impulsive stresslet flow field 
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The imposed flow predicted by the impulsive stresslet model consists of two counter-

rotating viscous vortex rings that expand and decay as exact mirror image about the r-axis 

(figure 3; electronic supplementary material, appendix movie S1). This is consistent with our 

PIV observation of the flow field around a copepod during a repositioning jump in that the 

spatial extension and temporal evolution of the two vortex rings, one in the wake and one 

around the forward moving body, are similar (Kiørboe et al. 2010a). 

The impulsive stresslet model provides a satisfactory least-squares fit to the decaying 

phase of the observed circulation of the wake vortex (figure 6), and the stresslet strengths 

estimated from such fits of 12 observed flow fields, Mfitted (equation 2.11), are in good 1:1 

correspondence with stresslet strengths estimated from the kinematics of copepod jumps, 

Mmeasured (equation 2.12) (figure 7; table 2). Thus, equation (2.12) allows for using the 

measured jump kinematics to estimate the impulsive stresslet strength, M, and therefore 

determine the entire jumping flow. The model also provides a satisfactory least-squares fit to 

the decaying phase of the observed circulation of the vortex around the copepod body, similar 

to the fit to the circulation of the wake vortex but with a time lag slightly shorter than the beat 

duration of the power stroke (figure 6). 

For both vortex rings associated with a copepod repositioning jump, the positions of 

vorticity maximum separate increasingly from the flow stagnation points as time goes on 

(Kiørboe et al. 2010a). Such separation, which is mainly due to viscous diffusion, is predicted 

by equations (2.9a, b) and (2.10a, b) and is a characteristic feature of viscous vortex rings. 

4. DISCUSSION 

4.1. The flow field 

Schlieren observations have long revealed the toroidal flow structures left by jumping 

copepods (e.g. Kerfoot et al. 1980). We previously developed a theoretical hydrodynamic 

model (impulsive Stokeslet) that described the wake flow (Kiørboe et al. 2010a); here, we 
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have presented a model that includes the flow that develops around the body of the jumping 

copepod (impulsive stresslet). It is relevant to here first compare the two models. 

Owing to fluid viscosity, the flow fields of both models decay immediately after the 

application of the impulsive forcing. The scaled area of influence, S/S*, decreases 

monotonically and in a very similar way as a function of the scaled time, t/t*, in the two 

models (figure 2a), indicating that viscous decay is the primary effect in both models. 

To compare the two models more explicitly, we applied both to an average 1-beat-cycle 

repositioning jump of the copepod Acartia tonsa from our previous PIV observations (table 

2). For small signal threshold velocities (i.e. U* < 0.5 mm s-1), the signal disappearance time, 

t*, is smaller for the impulsive stresslet model than for the impulsive Stokeslet model (figure 

2b). This difference is due to partial mutual vorticity cancellation by the two counter-rotating 

viscous vortices, which is ignored by the impulsive Stokeslet model. For the same reason, the 

wake flow velocity distribution, U(x), directly behind the application point of the forcing (i.e. 

x = 0) at the time immediately after the onset of the forcing (i.e. t = 0+) is predicted to decline 

faster by the stresslet than by the Stokeslet model (figure 2c). Thus, on top of viscous decay, 

which is the primary effect, partial mutual cancellation of oppositely signed vorticities in the 

impulsive stresslet model causes the imposed flow to attenuate faster, both spatially and 

temporally.  Finally, the hydrodynamic impulse, I, of the wake vortex, estimated from the 

attenuation of vortex circulation using PIV observations and the impulsive Stokeslet model, 

somewhat underestimates the maximum density-specific momentum of the jumping copepod 

(figure 2d in Kiørboe et al. 2010a), while the impulsive stresslet strength, M, shows a better 

1:1 correspondence between that estimated from circulation decay and measured directly 

from jump kinematics (figure 6; table 2). Again, this difference can be ascribed to the 

ignorance of partial vorticity cancellation by the impulsive Stokeslet model. 
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Thus, the impulsive stresslet model represents an improvement over our previous 

impulsive Stokeslet model, both by considering the interaction between the two vortex rings 

and, mainly, by describing the entire imposed flow field, not only the wake flow. The 

impulsive stresslet model indeed does provide a good approximation of the entire flow 

associated with a copepod repositioning jump as evidenced both by the good correspondence 

to PIV observations (figures 6-7) as well as to computational fluid dynamics (CFD) 

simulations (Jiang & Kiørboe 2010). The strength of the impulsive stresslet is the only 

parameter involved, and can be estimated as the product of the body volume, maximum jump 

speed, and total jump distance of the copepod. Therefore, accurate measurement of jump 

kinematics is sufficient to estimate the entire flow field. Both spatial extension and temporal 

duration of the imposed hydrodynamic signal scale with (M/U*)1/2 (equation 2.8). 

Because the scaling equation (2.13) of the impulsive Stokeslet model cannot be directly 

applied to the entire repositioning-by-jumping flow, in our previous work we had to fit the 

PIV-measured flow velocity data to the general scaling that relates the initial area of 

influence, S, to (I/U*)2/3 in order to determine the coefficient in front of the scaling (Kiørboe 

et al. 2010a). Based on this, we predicted that the imposed hydrodynamic signal is much less 

for an ambush-feeding than a cruising or hovering copepod for small individuals in a time-

averaged sense. In the following, we use the more accurate impulsive stresslet model to show 

that this prediction holds true at any instant in time. 

4.2. Swimming-by-jumping in Oithona is hydrodynamically quiet swimming. 

The flow fields generated by motility or feeding currents are likely to shape, to a 

certain degree, the feeding and motile behavior of planktonic organisms. We have previously 

discussed how the induced flow field may serve as a signal to predators, and how different 

feeding behaviors consequently may expose zooplankters differently to predation risk 

depending on their size and on the predation landscape (Kiørboe et al. 2010a). Continuous 
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feeding currents and steady cruising generate momentum jets, while unsteady jumps generate 

vortex rings. The latter attenuate spatially much faster than the two former flow fields and 

are, in addition, by default intermittent. Thus, the impulsive stresslet model predicts that the 

flow velocity induced by a jumping plankter decreases with distance, d, as d-4 (equation 2.6). 

(Note that the impulsive Stokeslet predicts d-3.) For a cruising neutrally buoyant plankter 

(modeled as a steady stresslet; appendix A) or a negatively buoyant hovering one (modeled as 

a steady Stokeslet) induced flow speeds decline with, respectively, d-2 and d-1 (e.g. Jiang et al. 

2002). Despite the higher induced peak flow velocity magnitudes, jumps may thus produce 

significantly weaker hydrodynamic signals to predators over a large range of body sizes. This 

is illustrated by the hydrodynamic signals generated by the two different mechanisms of 

propulsion in copepods, erratic jump-swimming and continuous cruising, as predicted by the 

impulsive stresslet model and a steady stresslet model, respectively: the flow velocity 

magnitude as well as the deformation rate of the wake flow attenuate much faster spatially for 

jump-swimming Oithona davisae males than for a like-sized copepod cruising steadily at the 

same average velocity, and both flow velocity and deformation rate are smaller for the jump-

swimmer just 1-2 body lengths (0.5 mm) behind the copepod (figure 8a, b). 

The likely size of the smallest energy containing eddies of small-scale oceanic 

turbulence is Le = 2  (3/E)1/4, and the associated turbulent shear is 



10t

E
  (e.g. Lazier 

& Mann 1989). If the kinematic viscosity  ~ 10-6 m2 s-l and the turbulent kinetic energy 

dissipation rate E ~ 10-7 W kg-1, then Le ~ 10 mm and t ~ 0.18 s-1. Thus, the hydrodynamic 

signal owing to jump-swimming by the male copepod Oithona davisae is probably 

overwhelmed by the smallest turbulent eddies. 

Rheotactic predators are more likely to respond to the flow velocity than to the 

deformation rate of the flow generated by their prey (Kiørboe & Visser 1999), and the area of 
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influence (S, within which the imposed flow velocities exceed a threshold velocity, U*) of the 

moving copepod is therefore a measure of its hydrodynamic ‘visibility’ to such predators 

(encounter cross section). S is substantially smaller for the jump-swimming copepod than for 

a same-size copepod cruising steadily through the water at the same average translating 

velocity (figure 8c). This applies at any one point in time but the discrepancy becomes even 

more pronounced when expressed as time-averaged signals; the area of influence owing to 

steady cruising is ~5 times larger than the time-averaged area of influence owing to jump-

swimming (figure 8c). 

Thus, despite the higher induced peak flow velocity magnitudes but because of the 

rapid spatial and temporal attenuation as well as the intermittent nature, jumps may produce 

significantly weaker hydrodynamic signals to predators. This suggests that the adoption of 

erratic jump-swimming is an adaptation to moving quietly and reducing detection by 

rheotactic predators. This is consistent with the observation of Yen (1985) that a rheotactic 

predatory copepod (Euchaeta elongata) had higher predation rates on the cruising copepod 

Pseudocalanus sp. than on the similarly sized jumping copepod Acartia clausii. For those 

copepods that swim by means of the feeding appendages, ‘swimming’ may thus be 

interpreted as a ‘by-product’ of feeding. 

4.3. Hydrodynamic ‘camouflage’ 

An interesting question is why Oithona davisae males in jump-swimming reduce the 

phase lag between individual swimming legs and consequently the jump distance relative to 

that of repositioning, escape and attack jumps. We suggest that a jump-swimming copepod 

adjusts its jump length to equal the distance that the vortex around its body travels within one 

jump interval because this generates the best hydrodynamic camouflage. The vortex traveling 

distance is calculated according to equation (2.9a) and the observed average jump interval T 

(= 1/21.5 s) as √2ܶ ~ 0.35 mm, which is indeed close to the average jump distance 
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observed, 0.38 mm (table 1).  Figure 9 shows the flow field consequence if the jump distance 

is roughly equal to the vortex traveling distance. The center of the vortex ring pairs of the 

next jump occurs at the vorticity maxima of the previous vortex around the copepod body. 

This way, vortex ring pairs are regularly spaced and do not deviate much from their canonical 

form; it looks like a train of equally distanced stepping stones; one disappears at the back and 

the other emerges in front.  In doing so, predators may misread the vortex rings as rings 

created by physical processes (turbulence), because the background flow field is likely to be 

made up of many such viscous vortices. This is because any unbounded flow that has net 

linear momentum (or momentum pair) eventually decays to the unique vortex ring solutions 

of the Stokes equations (Phillips 1956; Shariff & Leonard 1992). 

4.4. Jet or vortex: the jump number 

If intermittent jump-swimming is a means of moving quietly and because the formation 

of viscous vortex rings is essential to this effect, it becomes relevant to decide what degree of 

intermittency is required for the induced flow field to be characterized by viscous vortex 

rings (figure 3) rather than by momentum jets (Appendix A). Sozou (1979) showed that the 

Stokes flow developing subsequent to the instantaneous application of a constant point force 

initially has a dipole-like structure (i.e. develops a vortex ring), and this applies as long as the 

dimensionless parameter ߣ ൌ ට ସఔ௧

௫మା௥మ << 1. This inspires the definition of a dimensionless 

‘jump number’ to characterize the impulsiveness of the jump behavior: 

 jܰump ؠ ఛ

௅మ/ሺସఔሻ
    (4.1) 

where  is the duration of the power stroke and L the prosome length. Njump is the ratio of two 

time scales (beat duration and viscous time scale), and for values of order 1 or less, the 

induced flow will be in the form of a viscous vortex ring, while for very large values, the 

induced flow will be in the form of a jet. Using CFD numerical simulations, we have shown 
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that viscous vortex rings do form from copepod jumps for the jump numbers of the order of 1 

or less (Jiang & Kiørboe 2010). The duration of the power stroke does not have a very clear 

scaling with size, as suggested from the data compiled for various zooplankters, but the jump 

number increases dramatically with declining size (figure 10). This suggests that there is a 

critical minimum size below which plankters cannot create vortices and hence move quietly 

by jump-swimming. From equation (4.1) and assuming a power stroke of 1-10 ms duration as 

typical for plankters, this threshold is of order 0.05-0.2 mm.  Thus, most copepods can create 

vortices, copepod nauplii are questionable and protozoa cannot. This is consistent with 

observations of toroidal flow structures generated by copepods (Yen & Strickler 1996; van 

Duren & Videler 2003; Kiørboe et al. 2010a), and with the lack of such structures for the 

jumping ciliate Mesodinium rubrum (Jiang 2010). 

4.5. Viscous versus inviscid vortex rings in the context of animal propulsion 

Copepod jumps generate viscous vortex rings whose properties are strikingly different 

from the inviscid vortex rings typically considered in the context of animal propulsion (e.g. 

Triantafyllou et al. 2000; Anderson & Grosenbaugh 2005; Fish & Lauder 2006). In a viscous 

vortex ring, owing to viscous diffusion, the vorticity maximum point separates increasingly 

from the flow stagnation point as time goes on (Phillips 1956). In an inviscid vortex ring (e.g. 

Hill’s spherical vortex; Lim & Nickels 1995), both points move through the fluid with the 

same constant velocity and the form of the vortex ring does not change with time.  A (nearly 

inviscid) vortex ring generated from the traditional piston-cylinder arrangement is due to 

rolling-up of a vortex sheet that separates at the nozzle edge (e.g. Didden 1979); when long-

lasting momentum as well as fluid volume flux are issued out from the piston-cylinder 

arrangement, there exists a vortex ring formation process that physically limits the size of the 

generated vortex ring (Gharib et al. 1998; Linden & Turner 2001). Here, in contrast, viscous 
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vortex rings are generated because of short-lasting localized momentum forcing only (e.g. 

Voropayev & Afanasyev 1994), and therefore there is no such vortex ring formation process. 

Both the impulsive stresslet model and the impulsive Stokeslet model provide tractable 

theoretical frameworks for describing not only the copepod jumping flows but also the 

impulsively created flows by many other ecologically important marine organisms, including 

most zooplankton, small fish larvae and even krill operating in the low-Reynolds-number 

regime (Re typically ranging from 0.1 to several hundreds). Both models may also find their 

applications in small insect hovering flights, which are of a similar low-Reynolds-number 

range. The biological and ecological implications of viscous vortices have hitherto been very 

little studied. 
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Appendix A: Stresslet model for the swimming current of a neutrally buoyant copepod 

Stresslet (e.g. Pozrikidis 1992) flow equations are written in a cylindrical polar 

coordinate system (x, r, ) where the positive x-direction coincides with swimming direction: 

ݑ  ൌ ொ

଼గఓ

൫ଶ௫మି௥మ൯ ௫

ሺ௫మା௥మሻఱ/మ    (A.1a) 
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where Q is the stresslet strength (in dimensions of force times distance).  The associated 

velocity magnitude is: 
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and two lengths are formed: 
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The scaling for area of influence, S, is: 

 
ௌ
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Also, vorticity and streamfunction are: 
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ସగఓ
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A calculation example for the swimming current created by a neutrally buoyant copepod is 

shown in figure A1. 
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Figure captions 

Figure 1. (a) Schematic illustrating the general vorticity structure of the flow field imposed 

by a repositioning-by-jumping copepod, as shown in a meridian plane of a cylindrical polar 

coordinate system (x, r, ), where  is the azimuthal coordinate, r the radial coordinate, and 

the positive axial (x-) direction coincides with the jump direction. The vorticity sign is 

determined by the conventional right-hand rule. The blue patch indicates the wake vortex of 

negative vorticity and the red patch indicates the vortex of positive vorticity that is around the 

copepod body. (b) The impulsive stresslet model. (c) The impulsive Stokeslet model. 

 

Figure 2. Comparisons of the impulsive stresslet model versus the impulsive Stokeslet 

model. (a) Scaled area of influence, S/S*, as a function of scaled time, t/t*, plotted for the 

impulsive stresslet model (equation 2.8) and for the impulsive Stokeslet model (equation 

2.13) with symbols defined therein. (b) Signal disappearance time, t*, plotted against signal 

threshold velocity, U*. (c) Wake flow velocity distribution, U(x), directly behind the 

application point of the forcing (i.e. x = 0) at the time immediately after the onset of the 

forcing (i.e. t = 0+ when the signal is the strongest). Note that in (b) both the x- and y-axis are 

in the logarithmic scale and that in (c) the y-axis is in the logarithmic scale.  (b) and (c) are 

for the average 1-beat-cycle repositioning jump of the copepod Acartia tonsa (table 2); the 

model parameter, I (the hydrodynamic impulse), is calculated from equation (2.14) for the 

impulsive Stokeslet model, and M (the impulsive stresslet strength) from equation (2.12) for 

the impulsive stresslet model. It is concluded that viscous decay is the primary effect in both 

models, and that the flow field declines faster both temporally and spatially for the impulsive 

stresslet model than the impulsive Stokeslet model, owing to partial mutual vorticity 

cancellation by the two counter-rotating viscous vortices in the impulsive stresslet model. 
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Figure 3. Time evolution of flow velocity and vorticity fields calculated from equations 

(2.1a, b) and (2.2a, b) for M = 20 mm5 s-1 (typical for repositioning jumps by the copepod 

Acartia tonsa). (a) time =0.00 s, (b) time = 0.02 s, (c) time = 0.30 s, and (d) time = 1.00 s.  

Shown in the upper panel of each of the four blocks are uniform length velocity vectors 

(visualizing the flow direction only) overlapped with flow velocity magnitude contours 

labeled by values in mm s-1. The lower panel shows streamfunction line contours overlapping 

filled color contours of azimuthal vorticity. 

 

Figure 4. Velocity fluctuations of a swimming Oithona davisae male, here observed during 

about 200 ms (time within field of view). The observation period was only a small portion of 

the jump sequence that may have lasted for seconds. 

 

Figure 5. Frozen high-speed video images of Oithona davisae swimming by jumping (a) or 

performing a repositioning jump (b). Note that the phase lag between the swimming legs is 

~30° for the swimming copepod, but ~90° for the jumping individual. The individual in (b) is 

a female carrying eggs. 

 

Figure 6. Time evolutions of PIV-measured circulations of the wake vortex and the vortex 

around the copepod body for Acartia tonsa Jump #58 from Kiørboe et al. (2010a). Also 

plotted are the fits of equation (2.11) to the decaying phase of the circulation data of both 

vortices.  Besides those presented in the main text, this figure suggests that for repositioning 

jumps (including component jumps in jump-swimming), the short time interval that the wake 

vortex leads the body vortex is simply controlled by the duration of the power stroke. The 

shorter the duration of the power stroke, the better the synchronization between the wake 

vortex and the body vortex, and therefore the more accurate the flow described by the 
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impulsive stresslet model. Also, the shorter the duration of the power stroke, the faster the 

spatial and temporal attenuation of the flow field. The average power stroke duration of 

jump-swimming by the male Oithona davisae is 7.2 ms, in contrast to 10 ms for the 

repositioning jumps by this species. 

 

Figure 7. Scatter plot of Mfitted versus Mmeasured. Fitted values of the impulsive stresslet 

strength, M, were obtained by fitting equation (2.11) to the observed temporal decay of wake 

vortex circulation of the 12 repositioning jumps in the copepod Acartia tonsa (table 2), 

including 2 multiple-beat-cycle jumps (marked by triangles). Measured values of M were 

calculated from observed jump kinematics according to equation (2.12). All raw data are 

from Kiørboe et al. (2010a). 

 

Figure 8. Comparisons of swimming by jumping in the male copepod Oithona davisae 

versus a same-size neutrally buoyant copepod cruising steadily at the same averaged 

translating velocity. (a) Distribution of wake flow velocity, U(x), and (b) distribution of wake 

flow deformation rate, (x), directly behind the application point of the forcing (i.e. x = 0). 

Note that in both (a) and (b) the y-axis is in the logarithmic scale. For swimming by jumping, 

as modeled by an impulsive stresslet, the flow quantities are those at the time immediately 

after the onset of the impulsive forcing (i.e. t = 0+ when the flow is the strongest). The 

impulsive stresslet strength, M, is calculated from equation (2.12) using the average jump-

swimming kinematics (i.e. Umax = 40 mm s-1 and Djump = 0.375 mm; table 1) and copepod 

body volume Vcopepod = 4/3  (L/2)3 2 (where the prosome length L = 0.3 mm and the aspect 

ratio  = 0.5). The flow field imposed by the copepod cruising steadily at the same average 

translating velocity (i.e. Uaverage = 8 mm s-1) is calculated using the steady stresslet model 

(appendix A) of stresslet strength Q = 6 ae Uaverage × (2ae) where ae = L/2 2/3.  (c) 
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Normalized area of influence, S/Scopepod, within which a translating copepod imposes flow 

velocities exceeding a chosen threshold velocity, U* (= 0.1 mm s-1) as a function of 

normalized time, t/T, where Scopepod = 0.5  (L/2)2  and the average jump interval T = 1/21.5 

s based on the average jump frequency of 21.5 Hz. The dashed blue line is for the time-

averaged area of influence owing to swimming by jumping. Because of the linearity of the 

impulsive stresslet model, the jump-swimming flow field is calculated as linear combination 

of a series of impulsive stresslets separated spatially by Djump and temporally by T. 

 

Figure 9. Modeled instantaneous flow velocity and vorticity field imposed by a swimming-

by-jumping male Oithona davisae at: (a) a short time (~2.3 ms) just before the initiation of 

the next jump, (b) the initiation of the jump (the time instant indicated by the red arrow in 

figure 8c), and (c) a short time (~2.3 ms) just after the initiation of the jump (see figure 8 

legend for computation details). Shown in the upper panel of each of the three blocks are 

uniform length velocity vectors (visualizing the flow direction only) overlapped with flow 

velocity magnitude contours labeled by values in mm s-1. The lower panel shows 

streamfunction line contours overlapping filled color contours of azimuthal vorticity. In this 

way, the geometry of the individual vortex rings is least deformed; the copepod does not 

achieve minimized signal strength but optimized flow geometry (that of the canonical viscous 

vortex ring) for individual jumping vortices. 

 

Figure 10. Upper panel: beat duration of the power stroke of zooplankton jump (in ms; 

measured for a few copepod species and for the ciliate Mesodinium rubrum) as a function of 

the zooplankton body size (in mm). Lower panel: the non-dimensional jump number 

(equation 4.1) as a function of zooplankton body size (in mm). The copepod data are from 

Kiørboe et al. (2010a) (the PIV observations), Kiørboe et al. (2010b) (the video imaging 
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observations), and table 1 (Oithona davisae males). The single data point for Mesodinium 

rubrum is from Fenchel & Hansen (2006). Each marker represents only one data point. 

 

Figure A1. Stresslet flow velocity and vorticity fields calculated from equations (A.1a, b) 

and (A.5a, b) for Q = F η2/3 L = 1.167ൈ10-11 N m. Here Q is calculated by assuming the 

neutrally buoyant copepod (aspect ratio η = 0.38 and prosome length L = 1 mm) to swim at 

the same terminal sinking velocity as a same-size negatively buoyant copepod of excess 

density ∆ρ = 30 kg m-3 (i.e. F = 2.225ൈ10-8 N, a typical value for excess weight of a copepod 

in the considered size range). 
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Table 1. Analysis summary of 18 swimming males of Oithona davisae. The speeds were 
averaged over the total number (n) of individual jumps observed for each swimming 
copepod. Frequency is the frequency of component jumps, and stroke duration is the average 
duration of the first 4-6 power strokes observed for each individual. Observations were made 
either at high (H) frame rate (1900 frames s-1) and magnification, or at a lower (L) frame rate 
(400 frames s-1) and magnification. 
 

Copepod # 

Speed 

mm s-1 n 

Frequency 

s-1 

Stroke 

duration 

ms 

Distance 

mm per stroke 

Magnification/

frame rate 

       

63 5.94 13 22.29 6.6 0.266 H 

97 5.21 9 17.13 6.8 0.304 H 

244 3.4 7 17.55 6.4 0.194 H 

245 16.09 6 45.96 6.2 0.350 H 

246 6.73 8 16.03 9.8 0.420 H 

247 9.18 6 19.89 8.2 0.462 H 

248 11.85 9 30.65 8.2 0.387 H 

249 10.64 6 20.8 7.3 0.512 H 

250 6.29 10 21.39 6.3 0.294 H 

251 4.28 7 20.52 7 0.209 H 

261 6.21 5 25.6 6.8 0.243 H 

       

196 7.2 19 19  0.379 L 

198 7.5 27 17.3  0.434 L 

200 7.92 24 20.55  0.385 L 

201 10.74 23 21.3  0.504 L 

202 9.84 20 19.37  0.508 L 

203 6.4 38 17.67  0.362 L 

206-1 9.4 6 20  0.470 L 

209 7.03 33 15.88  0.440 L 

       

Average 8.00  21.5 7.2 0.375  
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Table 2. Analysis summary for 12 Acartia tonsa jumps. All raw data are from Kiørboe et al. 
(2010a). Djump is the distance traveled by the copepod during a jump; Umax is maximum speed 
attained by the copepod; Mmeasured is the impulsive stresslet strength calculated from measured 
jump kinematics using equation (2.12); Mfitted is the impulsive stresslet strength estimated 
from a fit of equation (2.11) to the decaying phase of the wake vortex; The Reynolds number, 

Re, is calculated as max/, where max is the maximum circulation of the wake vortex and  
the kinematic viscosity of seawater. All jumps consisted of 1 beat cycle of the swimming 
legs, except Jump #69 (2 beat cycles) and Jump #73-2 (3 beat cycles). For those 1 beat cycle 
jumps, the average Djump is 2.12 L (L, prosome length) and the average Umax is 135 L s-1. 

Jump # Copepod size 
Prosome length 

mm 

Djump 
 

mm 

Umax 
 

mm s-1 

Mmeasured 
 

mm5 s-1 

Mfitted 
 

mm5 s-1 

Re 

12 0.97 2.34 173 27.9 24.2 14 
17 1.08 2.36 177 39.8 63.6 16 

20-1 1.04 3.01 192 49.1 30.7 11 
20-2 1.04 2.44 192 39.9 26.8 11 
26-1 0.93 1.69 90 9.2 16.2 4 
29-1 1.13 1.79 84 16.5 14.8 4 
34 0.99 1.14 81 6.7 7.6 5 
49 0.7 1.32 78 2.7 5.0 2 
58 1.11 2.50 125 32.4 30.7 10 
83 1.03 2.73 161 36.4 25.4 27 
69 0.72 2.33 163 10.7 12.6 4 

73-2 1.12 3.97 157 66.4 68.5 23 
 


