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Abstract

The classical experiments on turbulent friction in rough pipes were performed by J. Nikuradse

in the 1930’s. Seventy years later, they continue to defy theory. Here we model Nikuradse’s

experiments using the phenomenological theory of Kolmogórov, a theory that is widely thought

to be applicable only to highly idealized flows. Our results include both the empirical scalings of

Blasius and Strickler, and are otherwise in minute qualitative agreement with the experiments;

they suggest that the phenomenological theory may be relevant to other flows of practical interest;

and they unveil the existence of close ties between two milestones of experimental and theoretical

turbulence.

∗ arXiv:physics/0507066 v1 8 Jul 2005; also Physical Review Letters , in press, 2005.
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Turbulence is the unrest that spontaneously takes over a streamline flow adjacent to a

wall or obstacle when the flow is made sufficiently fast. Although most of the flows that

surround us in everyday life and in nature are turbulent flows over rough walls, these flows

have remained amongst the least understood phenomena of classical physics [1, 2]. Thus, one

of the weightier experimental studies of turbulent flows on rough walls, and the most useful

in common applications, is yet to be explained theoretically 70 years after its publication.

In that study [3], Nikuradse elucidated how the friction coefficient between the wall of a

pipe and the turbulent flow inside depends on the Reynolds number of the flow and the

roughness of the wall. The friction coefficient, f , is a measure of the shear stress (or shear

force per unit area) that the turbulent flow exerts on the wall of a pipe; it is customarily

expressed in dimensionless form as f = τ/ρV 2, where ρ is the density of the liquid that

flows in the pipe and V the mean velocity of the flow. The Reynolds number is defined as

Re = V R/ν, where R is the radius of the pipe and ν the kinematic viscosity of the liquid.

Last, the roughness is defined as the ratio r/R between the size r of the roughness elements

(sand grains in the case of Nikuradse’s experiments) that line the wall of the pipe and the

radius of the pipe.

Nikuradse presented his data in the form of six curves, the log-log plots of f versus Re for

six values of the roughness [3]. These curves are shown in Fig. 1. At the onset of turbulence

[4], at a Re of about 3,000, all six curves rise united in a single bundle. At a Re of about

3,500, the bundle bends downward to form a marked hump and then it plunges in accord with

Blasius’s empirical scaling [5], f ∼ Re−1/4, as one by one in order of decreasing roughness

the curves start to careen away from the bundle. After leaving the bundle, which continues

to plunge, each curve sets out to trace a belly [6] as it steers farther from the bundle with

increasing Re, then flexes towards a terminal, constant value of f that is in keeping with

Strickler’s empirical scaling [7], f ∼ (r/R)1/3. For seventy years now, our understanding

of these curves has been aided by little beyond a pictorial narrative of roughness elements

being progressively exposed to the turbulent flow as Re increases [8].

In our theoretical work, we adopt the phenomenological imagery of “turbulent eddies”

[9–11] and use the spectrum of turbulent energy [12] at a lengthscale σ, E(σ), to determine

the velocity of the eddies of size s, us, in the form u2

s =
∫ s
0

E(σ)σ−2dσ, where E(σ) =

A ε2/3σ5/3cd(η/σ)ce(σ/R). Here A is a dimensionless constant, ε is the turbulent power per

unit mass, η = ν3/4ε−1/4 is the viscous lengthscale, R is the largest lengthscale in the flow,

2



3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.1 2.8

1

1

1

4

1

3

R/r = 15

30.6

60

126

507
3 

+ 
L

o
g

 f

252

Log R/r

Log Re

FIG. 1: Nikuradse’s data. Up to a Re of about 3, 000 the flow is streamline (free from turbulence)

and f ∼ 1/Re. Note that for very rough pipes (small R/r) the curves do not form a belly at

intermediate values of Re. Inset: verification of Strickler’s empirical scaling for f at high Re,

f ∼ (r/R)1/3.

A ε2/3σ5/3 is the Kolmogórov spectrum (which is valid in the inertial range, η � σ � R),

and cd and ce are dimensionless corrections for the dissipative range and the energetic range,

respectively. For cd we adopt an exponential form, cd(η/σ) = exp(−βη/σ) (which gives

cd ≈ 1 except in the dissipative range, where σ ≈ η), and for ce the form proposed by

von Kármán, ce(σ/R) = (1 + γ(σ/R)2)−17/6 (which gives ce ≈ 1 except in the energetic

range, where σ ≈ R), where β and γ are dimensionless constants [12]. To obtain expressions

for us and η in terms of Re, r/R, and V , we invoke the usual scalings [13], ε = κε u3

R/R

(Taylor’s scaling [14], where uR is the characteristic velocity of the largest eddies and κε

a dimensionless constant) and uR = κuV (where κu is a dimensionless constant). Then,

we can write η = bR Re−3/4, where b ≡ (κεκ
3

u)
−1/4, and (after changing the integration

variable to x ≡ σ/R) u2

s = A κ2/3

ε u2

R

∫ s/R
0 x−1/3cd(b Re−3/4/x)ce(x)dx. For s � R we can

set ce = 1, compute the integral, and let Re → ∞ to obtain u2

s = (3/2)A κ2/3

ε u2

R (s/R)2/3,

or u2

s ∼ u2

R(s/R)2/3, a well-known result of the phenomenological theory. Further, for

consistency with Taylor’s scaling we must have A κ2/3

ε = 2/3 (so that us = uR for s = R)

and therefore u2

s = κ2

u V 2(2/3)
∫ s/R
0 x−1/3cd(b Re−3/4/x)ce(x)dx.

We now seek to derive an expression for τ , the shear stress on the wall of the pipe. We

assume a viscous layer of constant thickness aη, where a is a dimensionless constant, and

call W a wetted surface parallel to the peaks of the viscous layer (Fig. 2). Then, τ is effected

by momentum transfer across W . Above W , the velocity of the flow scales with V , and the
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fluid carries a high horizontal momentum per unit volume (∼ ρV ). Below W , the velocity

of the flow is negligible, and the fluid carries a negligible horizontal momentum per unit

volume. Now consider an eddy that straddles the wetted surface W . This eddy transfers

fluid of high horizontal momentum downwards across W , and fluid of negligible horizontal

momentum upwards across W . The net rate of transfer of momentum across W is set by

the velocity normal to W , which velocity is provided by the eddy. Therefore, if vn denotes

the velocity normal to W provided by the dominant eddy that straddles W , then the shear

stress effected by momentum transfer across W scales in the form τ ∼ ρ V vn.

In order to identify the dominant eddy that straddles W , let us denote by s = r + aη the

size of the largest eddy that fits the coves between successive roughness elements. Eddies

much larger than s can provide only a negligible velocity normal to W . (This observation is

purely a matter of geometry.) On the other hand, eddies smaller than s can provide a sizable

velocity normal to W . Nevertheless, if these eddies are much smaller than s, their velocities

are overshadowed by the velocity of the eddy of size s. Thus, vn scales with us, which is

the velocity of the eddy of size s, and the dominant eddy is the largest eddy that fits the

coves between successive roughness elements. We conclude that τ ∼ ρ V us, or τ = κτρ V us

(where κτ is a dimensionless constant of order 1), and therefore f = κτus/V or

f = K

(

∫ s/R

0

x−1/3cd(b Re−3/4/x)ce(x)dx

)1/2

, (1)

where K ≡ κτκu

√

2/3, s/R = r/R + ab Re−3/4, and b ≡ (κεκ
3

u)
−1/4. Equation (1) gives f as

an explicit function of the Reynolds number Re and the roughness r/R.

To evaluate computationally the integral of (1), we set β = 2.1, γ = 6.783 (the values

given in [12]), a = 5 (5η being a common estimation of the thickness of the viscous layer),

κε = 5/4 (a value that follows from Kolmogórov’s four-fifth law [15]), κu = 0.036 (0.036 ±

0.005 being the value measured in pipe flow by Antonia and Pearson [16]), b ≡ (κεκ
3

u)
−1/4 =

11.4, and treat κτ as a free parameter (albeit a parameter constrained by theory to be of

order 1). With κτ = 0.5 (and therefore K = 0.015), (1) gives the plots of Fig. 3. (Note that a

different value of κτ would give the same plots except for a vertical translation.) These plots

show that (1) is in excellent qualitative agreement with Nikuradse’s data, right from the

onset of turbulence, including the hump and, for relatively low roughness, the bellies. These

plots remain qualitatively the same even if the value of any of the parameters is changed

widely. In particular, there is always a hump and there are always bellies: these are robust

4



n

v

v

aη

r

W

us

s
n

FIG. 2: Schematic of the immediate vicinity of the wall with roughness elements of size r covered

by a viscous layer of uniform thickness aη. The distance between roughness elements is about

equal to the height of the roughness elements, as in Nikuradse’s experiments [20]. The horizontal

line is the trace of a wetted surface W tangent to the peaks of the viscous layer.

features closely connected with the overall form of the spectrum of turbulent energy. The

connections will become apparent after the discussion that follows.

To help interpreting our results, we compute f without including the correction for the

energetic range—that is, setting γ = 0. In this case, the integral of (1) may be evaluated

analytically, with the result

f = K(r/R + ab Re−3/4)1/3

√

F (y), (2)

where F (y) = y2/3Γ
−2/3(y), Γ

−2/3 is the gamma function of order −2/3, and y = βη/s =

βb Re−3/4(r/R+ab Re−3/4)−1. With the same values of κτ , κu, a, b, and β as before, (2) gives

the solid-line plots in the inset of Fig. 3. The hump is no more. We conclude that the hump

relates to the energetic range. Further, with the exception of the hump at relatively low Re,

the plots of (1) coincide with the plots of (2); thus, we can study (2) to reach conclusions

about (1) at intermediate and high Re. For example, (2) gives f ∼ (r/R)1/3 for r � aη and

f ∼ Re−1/4 for r � aη. It follows that both (2) and (1) give a gradual transition between

the empirical scalings of Blasius and Strickler [17], in accord with Nikuradse’s data.

If we set β = 0 in addition to γ = 0, (2) simplifies to f = κτκu (r/R + ab Re−3/4)1/3.

With the same values of κτ , κu, a, and b as before, this expression gives the dashed-line

plots in the inset of Fig. 3. Now the bellies are no more. We conclude that the bellies relate

to the dissipative range. The dissipation depresses the values of f at relatively low and

intermediate Re, leading to the formation of the bellies of Nikuradse’s data.

We are ready to explain the unfolding of Nikuradse’s data in terms of the varying habits

of momentum transfer with increasing Re (Fig. 4). At relatively low Re, the inertial range

is immature, and the momentum transfer is dominated by eddies in the energetic range,
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FIG. 3: Plot of (1). Inset: Plot of (2) (no correction for the energetic range: solid lines) and plot

of (2) with γ = 0 (no correction for the energetic range and the dissipative range: dashed lines).

whose velocity scales with V , and therefore with Re. Consequently, an increase in Re leads

to a more vigorous momentum transfer—and to an increase in f . This effect explains the

rising part of the hump. At higher Re, the momentum transfer is dominated by eddies of size

s ≈ aη � r. Since η ∼ Re−3/4, with increasing Re the momentum transfer is effected by ever

smaller (and slower) eddies, and f lessens as Re continues to increase. This effect explains

the plunging part of the hump—the part governed by Blasius’s scaling. At intermediate Re,

s = r + aη with r ≈ aη. Due to the decrease in η, s continues to lessen as Re continues

to increase, but at a lower rate than before, when it was s ≈ aη � r. Thus, the curve

associated with r deviates from Blasius’s scaling and starts to trace a belly. As η continues

to decrease, the dominant eddies become decidedly larger than the smaller eddies in the

inertial range, which is well established now, and any lingering dissipation at lengthscales

larger than s must cease. This effect explains the rising part of the belly. Last, at high Re,

s ≈ r � aη. As Re increases further, η lessens and new, smaller eddies populate the flow

and become jumbled with the preexisting eddies. Yet the momentum transfer continues to

be dominated by eddies of size r, and f remains invariant. This effect explains Nikuradse’s

data at high Re, where f is governed by Strickler’s scaling.

We have predicated equation (1), on the assumption that the turbulent eddies are gov-

erned by the phenomenological theory of turbulence. The theory was originally derived for

isotropic and homogeneous flows, but recent research [18] suggests that it applies to much
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FIG. 4: Schematic of the relations among a generic Nikuradse curve, the spectrum of turbulent

energy, the size of the roughness elements, the thickness of the viscous layer, and the size of the

dominant eddies.

more general flows as well. Our results indicate that even where the flow is anisotropic and

inhomogeneous—as is the case in the vicinity of a wall—the theory gives an approximate

solution that embodies the essential structure of the complete solution (including the correct

scalings of Blasius and Strickler) and is in detailed qualitative agreement with the observed

phenomenology. Remarkably, the qualitative agreement holds starting at the very onset of

turbulence, in accord with experimental evidence that “in pipes, turbulence sets in suddenly

and fully, without intermediate states and without a clear stability boundary” [4]. The de-

ficiencies in quantitative agreement point to a need for corrections to account for the effect

of the roughness elements on the dissipative range as well as for the effect of the overall

geometry on the energetic range.

In conclusion, to a good approximation the eddies in a pipe are governed by the spectrum

of turbulent energy of the phenomenological theory. The size of the eddies that dominate

the momentum transfer close to the wall is set by a combination of the size of the roughness

elements and the viscous lengthscale. As a result, the dependence of the turbulent friction

on the roughness and the Reynolds number is a direct manifestation of the distribution

of turbulent energy given by the phenomenological theory. This close relation between the

turbulent friction and the phenomenological theory [19] may be summarized in the following

observation: the similarity exponents of Blasius and Strickler are but recast forms of the

exponent 5/3 of the Kolmogórov spectrum.

We are thankful to F. A. Bombardelli, N. Goldenfeld, and W. R. C. Phillips for a number

of illuminating discussions. We are also thankful to Referee C, whose pointed criticism

resulted in a much stronger paper. J. W. Phillips kindly read our manuscript and made

suggestions for its improvement.
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