2,421 research outputs found

    Direct SUSY dark matter detection-Theoretical rates due to the spin

    Full text link
    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus the direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: i) The coherent mode, due to the scalar interaction and ii) The spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and, in directional experiments, the correlation of the event rates with the sun's motion. In standard non directional experiments the modulation is small, less than two per cent. In the case of the directional event rates we like to suggest that the experiments exploit two features, of the process, which are essentially independent of the SUSY model employed, namely: 1) The forward-backward asymmetry, with respect to the sun's direction of motion, is very large and 2) The modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the Earth at the maximum is direction dependent.Comment: 16 Latex pages, 15 figures, 3 table

    Pulsed Feedback Defers Cellular Differentiation

    Get PDF
    Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle

    The trans-activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography

    Get PDF
    Sporulation in Bacillus involves the induction of scores of genes in a temporally and spatially co-ordinated programme of cell development. Its initiation is under the control of an expanded two-component signal transduction system termed a phosphorelay. The master control element in the decision to sporulate is the response regulator, Spo0A, which comprises a receiver or phosphoacceptor domain and an effector or transcription activation domain. The receiver domain of Spo0A shares sequence similarity with numerous response regulators, and its structure has been determined in phosphorylated and unphosphorylated forms. However, the effector domain (C-Spo0A) has no detectable sequence similarity to any other protein, and this lack of structural information is an obstacle to understanding how DNA binding and transcription activation are controlled by phosphorylation in Spo0A. Here, we report the crystal structure of C-Spo0A from Bacillus stearothermophilus revealing a single alpha -helical domain comprising six alpha -helices in an unprecedented fold. The structure contains a helix-turn-helix as part of a three alpha -helical bundle reminiscent of the catabolite gene activator protein (CAP), suggesting a mechanism for DNA binding. The residues implicated in forming the sigma (A)-activating region clearly cluster in a flexible segment of the polypeptide on the opposite side of the structure from that predicted to interact with DNA. The structural results are discussed in the context of the rich array of existing mutational data

    Precision determination of the dpi -> NN transition strength at threshold

    Get PDF
    An unusual but effective way to determine at threshold the dpi -> NN transition strength is to exploit the hadronic ground-state broadening in pionic deuterium, accessible by x-ray spectroscopy. The broadening is dominated by the true absorption channel dpi- -> nn, which is related to s-wave pion production pp -> dpi+ by charge symmetry and detailed balance. Using the exotic atom circumvents the problem of Coulomb corrections to the cross section as necessary in the production experiments. Our dedicated measurement finds (1171+23/-49) meV for the broadening yielding (252+5/-11) \mub.Comment: 4 pages, 2 figures, 1 tabl

    Pionic Deuterium

    Get PDF
    The strong interaction shift and broadening in pionic deuterium have been remeasured with high statistics by means of the (3p-1s) X-ray transition using the cyclotron trap and a high-resolution crystal spectrometer. Preliminary results are (-2325+/-31) meV (repulsive) for the shift and (1171+23/-49} meV for the width, which yields precise values for the pion-deuteron scattering length and the threshold parameter for pion production.Comment: Conf. Proc. Few Body 19 (FB19), August 31 - September 5, 2009, Bonn, Germany 9 pages, 13 figure

    Semimicroscopical description of the simplest photonuclear reactions accompanied by excitation of the giant dipole resonance in medium-heavy mass nuclei

    Full text link
    A semimicroscopical approach is applied to describe photoabsorption and partial photonucleon reactions accompanied by the excitation of the giant dipole resonance (GDR). The approach is based on the continuum-RPA (CRPA) with a phenomenological description for the spreading effect. The phenomenological isoscalar part of the nuclear mean field, momentum-independent Landau-Migdal particle-hole interaction, and separable momentum-dependent forces are used as input quantities for the CRPA calculations. The experimental photoabsorption and partial (n,γ)(n,\gamma)-reaction cross sections in the vicinity of the GDR are satisfactorily described for 89^{89}Y, 140^{140}Ce and 208^{208}Pb target nuclei. The total direct-neutron-decay branching ratio for the GDR in 48^{48}Ca and 208^{208}Pb is also evaluated.Comment: 19 pages, 5 eps figure

    Wide-angle spectral imaging using a Fabry-Pérot interferometer

    Get PDF
    We show that wide-angle spectral imaging can be achieved with compact and cost-effective devices using Fabry-Pérot interferometers. Designs with a full field of view of 90°, in which the Fabry-Pérot interferometer is mounted either in front of an imaging lens system or behind a telecentric lens system, are presented and analysed. We show the dependency of the spectral resolution on the numerical aperture of the lens system and demonstrate its value as a design criterion

    Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence

    Full text link
    We measured the ratio Px/PzP_{x}/P_{z} of the transverse to longitudinal components of polarization transferred from electrons to bound protons in 12C^{12}\mathrm{C} by the 12C(e,ep)^{12}\mathrm{C}(\vec{e},e'\vec{p}) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px/Pz)12C/(Px/Pz)1H(P_{x}/P_{z})_{^{12}\mathrm{C}}/(P_{x}/P_{z})_{^{1}\mathrm{H}}, for both ss- and pp-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from 2H^{2}\mathrm{H} and 4He^{4}\mathrm{He}, suggesting a universal behavior. It further implies no dependence on average local nuclear density

    Altitude of the Potentiometric Surface in the Mississippi River Valley Alluvial Aquifer, Spring 2018

    Get PDF
    The Mississippi River Valley alluvial (MRVA) aquifer is an important surficial aquifer in the Mississippi Alluvial Plain (MAP) area. The aquifer is generally considered to be an unconfined aquifer (fig. 1; Clark and others, 2011), and withdrawals are primarily used for irrigation (Maupin and Barber, 2005). These groundwater withdrawals have resulted in substantial areas of water-level decline in parts of the aquifer. Concerns about water-level declines and the sustainability of the MRVA aquifer have prompted the U.S. Geological Survey (USGS), as part of the USGS Water Availability and Use Science Program and with assistance from other Federal, State, and local agencies, to undertake a regional water-availability study to assess the characteristics of the MRVA aquifer, including the potentiometric-surface altitude of the MRVA aquifer for spring 2018, and to provide information to water managers to inform their decisions about resource allocations and aquifer sustainability. The purpose of this report was to present a potentiometric-surface map for the MRVA aquifer using manually measured groundwater-altitude data and daily mean or maximum groundwater-altitude data from wells measured generally in spring 2018, which is after water levels have substantially recovered from pumping in the previous irrigation season and before pumping begins for the next irrigation season, and using the altitude of the top of the water surface in rivers in the area, hereinafter referred to as “surface-water altitude,” generally on April 10, 2018, from streamgages in the area. The term “potentiometric surface” is used in this report because it is applicable for maps of the groundwater-altitude surface in unconfined, semiconfined, and confined aquifers (Lohman, 1972). In this report, the maps of the MRVA aquifer’s groundwater surface are termed potentiometric-surface maps as opposed to water-table maps because, although the MRVA aquifer generally exhibits characteristics of unconfined conditions, where surface-water features may or may not be hydraulically connected, it also exhibits characteristics of confined or semiconfined conditions in some areas at least during part of the year. The location of these areas, where the aquifer is confined or semiconfined, is not well understood or defined (Arthur, 1994; Kleiss and others, 2000). Datasets used attache
    corecore