108 research outputs found

    Pensions and the Dynamics of Inequality in Italy: Initial Evidence, 1987-2014

    Get PDF
    As certified by Eurostat, in 2015 Italy was among the European countries with the most pronounced income inequality, with a “20:20 ratio” of 5.8. That is, the income share of the richest 20% of households is 5.8 times that of the poorest 20%. Only Serbia, Romania, Lithuania, Bulgaria, Spain, Greece, Latvia, Estonia e Portugal displayed a higher inequality ratio that year. Even in the broader group of all OECD countries, including the US and the UK, Italy is among the most unequal. The main difference between Italy and the US or Britain is that in Italy inequality had gradually decreased through the 1980s, scoring a minimum in 1991, before then rising dramatically (Fiorio, 2011; Brandolini and Smeeding, 2008). In the US and the UK, by contrast, inequality has increased steadily. The social costs of income inequality can be substantially aggravated or mitigated by a country’s welfare system, so it is important to analyze the structures that the various nations have adopted. The main differences concern both amount of expenditure and the form in which benefits are delivered. For Italy, between 2000 and 2008 the bulk of social expenditure went for old age pensions (59.1% compared with an average of 43.7% in Europe). The article examines trends in inequality in Italy from 1987 to 2014 and analyzes the changing distribution of individual incomes by source (payroll employment, self-employment, pension) and by geographical area

    Simulations and comparisons of basic analog and digital circuit blocks employing Tunnel FETs and conventional FinFETs

    Get PDF
    NTRODUCTION \u2015 In the past decade the Tunnel Field Effect Transistor (TFET) relying on band-to-band tunneling (BTBT) has emerged as one of the most promising small slope FETs able to achieve a subthreshold swing (SS) below the room temperature 60 mV/dec limit of conventional MOSFET [1]. Many simulation studies attributed to TFETs the potential to outperform conventional MOSFETs in the ultra-low voltage domain (VDD < 0.4 V) in both analog [2-3] and digital [4-7] applications. However, only basic digital and analog circuits have been fabricated up to date, such as current mirrors [8] and inverter gates [9]. As for semiconductor materials, III-V hetero-structure TFETs may be able to achieve a sub-thermal SS in a wide current range and, at the same time, very competitive on currents [1], as demonstrated by a recently fabricated vertical InAs/GaAsSb/GaSb nanowire n-type TFETs [10]. The aim of this work is to benchmark a complementary III-V TFET technology platform against the mainstream FinFET reference, by considering basic building blocks of digital and analog applications. To this purpose, we selected a complementary III-V TFET technology platform designed and optimized using full quantum simulations in [11], where n- and p-type TFET pairs are realized in the same InAs/AlGaSb material system. The use of such devices allowed us to remove the excessively optimistic assumption of perfectly symmetric n- and p-type TFETs, very frequently embraced in previous simulation studies (e.g. in [2, 7]). We present circuit-level simulations performed on current mirrors and inverter-based logic blocks, which are identified as basic topologies representative of the analog and digital design realms, respectively. Similar benchmarking results for the same technology platforms have been obtained by focusing the comparison on more complicated circuit blocks [3], [5] and [6]

    Assessment of InAs/AlGaSb Tunnel-FET Virtual Technology Platform for Low-Power Digital Circuits

    Get PDF
    In this work, a complementary InAs/Al0.05Ga0.95Sb tunnel field-effect-Transistor (TFET) virtual technology platform is benchmarked against the projection to the CMOS FinFET 10-nm node, by means of device and basic circuit simulations. The comparison is performed in the ultralow voltage regime (below 500 mV), where the proposed III-V TFETs feature ON-current levels comparable to scaled FinFETs, for the same low-operating-power OFF-current. Due to the asymmetrical n-and p-Type I-V exts , trends of noise margins and performances are investigated for different Wp/Wn ratios. Implications of the device threshold voltage variability, which turned out to be dramatic for steep slope TFETs, are also addressed

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Impact of TFET unidirectionality and ambipolarity on the performance of 6T SRAM cells

    Get PDF
    We use mixed device-circuit simulations to predict the performance of 6T static RAM (SRAM) cells implemented with tunnel-FETs (TFETs). Idealized template devices are used to assess the impact of device unidirectionality, which is inherent to TFETs and identify the most promising configuration for the access transistors. The same template devices are used to investigate the $ extV- m DD range, where TFETs may be advantageous compared to conventional CMOS. The impact of device ambipolarity on SRAM operation is also analyzed. Realistic device templates extracted from experimental data of fabricated state-of-the-art silicon pTFET are then used to estimate the performance gap between the simulation of idealized TFETs and the best experimental implementations

    Microscopic origin of random telegraph noise fluctuations in aggressively scaled RRAM and its impact on read disturb variability

    Get PDF
    Random telegraph noise (RTN) is an important intrinsic phenomenon of any logic or memory device that is indicative of the reliability and stochastic variability in its performance. In the context of the resistive random access memory (RRAM), RTN becomes a key criterion that determines the read disturb immunity and memory window between the low (LRS) and high resistance states (HRS). With the drive towards ultra-low power memory (low reset current) and aggressive scaling to 10 × 10 nm2 area, contribution of RTN is significantly enhanced by every trap (vacancy) in the dielectric. The underlying mechanisms governing RTN in RRAM are yet to be fully understood. In this study, we aim to decode the role of conductance fluctuations caused by oxygen vacancy transport and inelastic electron trapping and detrapping processes. The influence of resistance state (LRS, shallow and deep HRS), reset depth and reset stop voltage (VRESET-STOP) on the conductance variability is also investigated. © 2013 IEEE

    GOLFIG Chemo-Immunotherapy in Metastatic Colorectal Cancer Patients. A Critical Review on a Long-Lasting Follow-Up

    Get PDF
    Background: GOLFIG is a chemo-immunotherapy regimen established in preclinical models that combines gemcitabine + FOLFOX (fluoropyrimidine backbone coupled to oxaliplatin) poly-chemotherapy with low-dose s. c. recombinant interleukin-2 (rIL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF). Promising antitumor effects in metastatic colorectal cancer (mCRC) patients were obtained in previous phase II and III trials. Here we report the results of 15 years of follow-up. Methods: This is a multi-institutional retrospective analysis including 179 mCRC patients receiving GOLFIG regimen between June 2002 and June 2018. Sixty-two of them received the treatment as frontline (enrolled in the GOLFIG-2 phase III trial) and 117 as second/third line (49 enrolled in the GOLFIG-1 phase II trial and 68 as compassionate use). One hundred twelve patients showed a primary left side and 67 a primary right side; K/N-ras mutational status was available in 74 cases, and an activating mutation was detected in 33. Kaplan–Meier and Cox regression analyses were carried out to relate PFS and OS with different parameters. Results: Overall, we recorded a mean PFS and OS of 15.28 (95% CI: 10.36–20.20) and 24.6 (95% CI: 19.07–30.14) months, respectively, with 14 patients surviving free of progression for 10 years. This regimen, in our updated survey of the GOLFIG-2 trial, confirmed superiority over FOLFOX in terms of PFS (hazard ratio (HR) = 0.58, p = 0.006) with a trend to a longer OS (HR = 0.69, P = 0.06) in the first line. Our analysis also confirmed significant antitumor activity in pre-treated patients, reporting a mean PFS and OS of 12.55 (95% CI: 7.19–17.9) and 20.28 (95% CI: 14.4–26.13) months, respectively. Immune-related adverse events (irAEs) were recorded in 24% of the cases and were related to a longer survival (HR = 0.36; P = 0.0001). Finally, patients' outcome was not correlated to sex, sidedness, and MT-K/N-ras. Conclusions: The GOLFIG regimen is a reliable underestimated therapeutic option in pre-treated mCRC patients and offers a strong rationale to design further trials

    Comitato di Redazione della Rivista “Ricerche di Storia Economica e Sociale” (RISES)

    No full text
    membro del Comitato di Redazione della rivista "Rivista di Storia Economica e Social
    • …
    corecore