942 research outputs found

    Accumulated Oxygen Deficit During Arm Cranking in Hypoxia: A Bayesian Perspective and Methodological Considerations

    Get PDF
    International Journal of Exercise Science 14(3): 1090-1098, 2021. The purpose of this investigation was to observe the effects of normobaric hypoxia on accumulated oxygen deficit (AOD) with evaluation using both Bayesian and Frequentist analyses. Eighteen recreationally active men performed a graded exercise test (GXT) in normobaric normoxia (N; FiO2~20%) and normobaric hypoxia (H; FiO2~14%) to determine peak power output (PPO). Time to exhaustion trials were later conducted at 110% and 120% PPO under both N, and H. AOD and %AN (% anaerobic energy contribution) were calculated in three conditions: N, H, and H using the N regression equation (HN). Bayesian repeated measures ANOVA revealed differences in AOD and %AN between regression equations while Frequentist Repeated measures ANOVA revealed non-significant differences for AOD (p = .148) and %AN (p = .150). Using predicted oxygen consumption extrapolated from a normoxic environment during exercise in hypoxia may lead to overestimation of AOD and %AN with a Bayesian approach and contrasting results using frequentist statistics

    International Society of Sports Nutrition position stand: beta-alanine

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4–6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4–6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine

    Effects of resistance training on classic and specific bioelectrical impedance vector analysis in elderly women

    Get PDF
    Raw bioelectrical impedance analysis (BIA) data [resistance (R); reactance (Xc)] through bioelectrical impedance vector analysis (BIVA) and phase angle (PhA) have been used to evaluate cellular function and hydration status. The purpose of this investigation was to examine the effects of resistance training (RT) on classic and specific BIVA in elderly women. Twenty women (mean ± SD; age: 71.9 ± 6.9 years; BMI: 24.5 ± 3.0 kg m(-2)) completed a 6-month RT program. Whole-body, single-frequency BIA, body geometry, and leg strength (5RM) measures were completed at baseline (t0), 3 months (t3), and 6 months (t6). The mean impedance vector displacements were compared using Hotelling's T(2) test to evaluate changes in R and Xc relative to height (R/ht; Xc/ht) or body volume (Rsp; Xcsp) estimated from the arms, legs, and trunk. 5RM, PhA, and BIVA variables were compared using ANOVA. PhA improved at t6 (p < 0.01), while 5RM improved at t3 and t6 (p < 0.01). Using classic BIVA, 6 months (T(2) = 31.6; p < 0.01), but not 3 months of RT (T(2) = 4.5; p = 0.20), resulted in significant vector migration. Using specific BIVA, 6 months (T(2) = 24.4; p < 0.01), but not 3 months of RT (T(2) = 5.5; p = 0.10), also resulted in significant vector migration. 5RM was correlated to both PhA (r = 0.48-56) and Xcsp (r = 0.45-53) at all time points. Vector displacements were likely the result of improved cellular integrity (Xcsp) and cellular health (PhA)

    Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women

    Get PDF
    This is the publisher's version, also found at http://www.jissn.com/content/4/1/20The purpose of this study was to examine the effects of 5 days of Creatine (Cr) loading on the electromyographic fatigue threshold (EMGFT) in college-aged women. Fifteen healthy college-aged women (mean ± SD = 22.3 ± 1.7 yrs) volunteered to participate in this double-blind, placebocontrolled study and were randomly placed into either placebo (PL – 10 g of flavored dextrose powder; n = 8) or creatine (Cr – 5 g di-creatine citrate plus 10 g of flavored dextrose powder; n = 7; Creatine Edge, FSI Nutrition) loading groups. Each group ingested one packet 4 times per day (total of 20 g/day) for 5 days. Prior to and following supplementation, each subject performed a discontinuous incremental cycle ergometer test to determine their EMGFT value, using bipolar surface electrodes placed on the longitudinal axis of the right vastus lateralis. Subjects completed a total of four, 60 second work bouts (ranging from 100–350 W). The EMG amplitude was averaged over 10 second intervals and plotted over the 60 second work bout. The resulting slopes from each successive work bouts were used to calculate EMGFT. A two-way ANOVA (group [Cr vs. PL] × time [pre vs. post]) resulted in a significant (p = 0.031) interaction. Furthermore, a dependent samples t-test showed a 14.5% ± 3.5% increase in EMGFT from pre- to post-supplementation with Cr (p = 0.009), but no change for the PL treatment (-2.2 ± 5.8%; p = 0.732). In addition, a significant increase (1.0 ± 0.34 kg; p = 0.049) in weight (kg) was observed in the Cr group but no change for PL (-0.2 kg ± 0.2 kg). These findings suggest that 5 days of Cr loading in women may be an effective strategy for delaying the onset of neuromuscular fatigue during cycle ergometry

    Minimal nutrition intervention with high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement improves body composition and exercise benefits in overweight adults: A randomized controlled trial

    Get PDF
    Background: Exercise and high-protein/reduced-carbohydrate and -fat diets have each been shown separately, or in combination with an energy-restricted diet to improve body composition and health in sedentary, overweight (BMI > 25) adults. The current study, instead, examined the physiological response to 10 weeks of combined aerobic and resistance exercise (EX) versus exercise + minimal nutrition intervention designed to alter the macronutrient profile, in the absence of energy restriction, using a commercially available high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement (EXFS); versus control (CON). Methods: Thirty-eight previously sedentary, overweight subjects (female = 19; male = 19) were randomly assigned to either CON (n = 10), EX (n = 14) or EXFS (n = 14). EX and EXFS participated in supervised resistance and endurance training (2× and 3×/wk, respectively); EXFS consumed 1 shake/d (weeks 1 and 2) and 2 shakes/d (weeks 3–10). Results: EXFS significantly decreased total energy, carbohydrate and fat intake (-14.4%, -27.2% and -26.7%, respectively; p < 0.017), and increased protein and fiber intake (+52.1% and +21.2%, respectively; p < 0.017). EX and EXFS significantly decreased fat mass (-4.6% and -9.3%, respectively; p < 0.017), with a greater (p < 0.05) decrease in EXFS than EX and CON. Muscle mass increase only reached significance in EXFS (+2.3%; p < 0.017), which was greater (p < 0.05) than CON but not EX (+1.1%). Relative VO2max improved in both exercise groups (EX = +5.0% and EXFS = +7.9%; p < 0.017); however, only EXFS significantly improved absolute VO2max (+6.2%; p = 0.001). Time-to-exhaustion during treadmill testing increased in EX (+9.8%) but was significantly less (p < 0.05) than in EXFS (+21.2%). Total cholesterol and LDL decreased only in the EXFS (-12.0% and -13.3%, respectively; p < 0.017). Total cholesterol-to-HDL ratio, however, decreased significantly (p < 0.017) in both exercise groups. Conclusion: Absent energy restriction or other dietary controls, provision of a high-protein/low-carbohydrate and -fat, nutrient-dense food supplement significantly, 1) modified ad libitum macronutrient and energy intake (behavior effect), 2) improved physiological adaptations to exercise (metabolic advantage), and 3) reduced the variability of individual responses for fat mass, muscle mass and time-to-exhaustion – all three variables improving in 100% of EXFS subjects

    The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 Years): a double-blind randomized study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ageing is associated with a significant reduction in skeletal muscle carnosine which has been linked with a reduction in the buffering capacity of muscle and in theory, may increase the rate of fatigue during exercise. Supplementing beta-alanine has been shown to significantly increase skeletal muscle carnosine. The purpose of this study, therefore, was to examine the effects of ninety days of beta-alanine supplementation on the physical working capacity at the fatigue threshold (PWC<sub>FT</sub>) in elderly men and women.</p> <p>Methods</p> <p>Using a double-blind placebo controlled design, twenty-six men (n = 9) and women (n = 17) (age ± SD = 72.8 ± 11.1 yrs) were randomly assigned to either beta-alanine (BA: 800 mg × 3 per day; n = 12; CarnoSyn™) or Placebo (PL; n = 14) group. Before (pre) and after (post) the supplementation period, participants performed a discontinuous cycle ergometry test to determine the PWC<sub>FT</sub>.</p> <p>Results</p> <p>Significant increases in PWC<sub>FT </sub>(28.6%) from pre- to post-supplementation were found for the BA treatment group (p < 0.05), but no change was observed with PL treatment. These findings suggest that ninety days of BA supplementation may increase physical working capacity by delaying the onset of neuromuscular fatigue in elderly men and women.</p> <p>Conclusion</p> <p>We suggest that BA supplementation, by improving intracellular pH control, improves muscle endurance in the elderly. This, we believe, could have importance in the prevention of falls, and the maintenance of health and independent living in elderly men and women.</p

    Beta-alanine supplementation and high-intensity interval training augments metabolic adaptations and endurance performance in college-aged men

    Get PDF
    A randomized, double-blind, placebo-controlled study was conducted to evaluate the effects β-alanine supplementation and high-intensity interval training (HIIT) on endurance performance
    • …
    corecore