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ABSTRACT 

International Journal of Exercise Science 14(3): 1090-1098, 2021. The purpose of this investigation was 
to observe the effects of normobaric hypoxia on accumulated oxygen deficit (AOD) with evaluation using both 
Bayesian and Frequentist analyses. Eighteen recreationally active men performed a graded exercise test (GXT) in 
normobaric normoxia (N; FiO2~20%) and normobaric hypoxia (H; FiO2~14%) to determine peak power output 
(PPO). Time to exhaustion trials were later conducted at 110% and 120% PPO under both N, and H. AOD and %AN 
(% anaerobic energy contribution) were calculated in three conditions: N, H, and H using the N regression equation 
(HN). Bayesian repeated measures ANOVA revealed differences in AOD and %AN between regression equations 
while Frequentist Repeated measures ANOVA revealed non-significant differences for AOD (p = .148) and %AN 
(p = .150). Using predicted oxygen consumption extrapolated from a normoxic environment during exercise in 
hypoxia may lead to overestimation of AOD and %AN with a Bayesian approach and contrasting results using 
frequentist statistics. 
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INTRODUCTION 
 
Energy system contribution is of great importance when assessing the demand for a given 
activity (1). Accumulated oxygen deficit (AOD) during constant work-rate ergometry is a valid 
indirect measure of anaerobic energy system contribution to exercise (27). Aerobic contribution 
is determined by extrapolation of the linear relationship between intensity and oxygen uptake 
(17). This extrapolation is commonly performed using a traditional graded exercise test where 
oxygen uptake and intensity are naturally observed. Often, this baseline graded exercise test 
serves as the only reference point for extrapolation. When calculating aerobic contribution in 
this way, it may be inappropriate to use regression equations acquired in normoxia to attempt 
to calculate AOD in a hypoxic environment due to possible underestimation of values. 
However, a second graded exercise test performed in hypoxia may be necessary.  
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 Moderate normobaric hypoxia inherently reduces aerobic capacity by limiting oxygen 
availability and transport, possibly leading to an earlier reliance on anaerobic metabolism 
during exercise. Upper-body ergometry consistently produces maximal VO2 values around 70% 
of those observed during lower-body cycling (19). While prior research has focused on lower 
body cycling or full-body exercise, upper body differences in muscle fiber type distribution (14) 
and diffusion distance (6) may require greater anaerobic energy provisions as reflected by AOD.  
 
Decrements in VO2max observed in hypoxic environments depend on the severity of the 
imposed hypoxia. In severe acute hypoxia, most of the decrement in VO2max is caused by a 
decrease in arterial O2 content (5), while in moderate hypoxia, the decrement is attributed to 
tissue O2 extraction (24). These decrements in O2 tissue extraction may lead to a greater reliance 
on anaerobic energy systems (12), which might be reflected within the AOD. Therefore, the 
primary purpose of the current study was to observe the effects of normobaric hypoxia on AOD 
and anaerobic energy system contribution during different intensities of upper-body arm 
cranking exercise. The secondary purpose was to provide an example of how a Bayesian analysis 
may be used to supplement a traditional frequentist analysis in the exercise science field. 
 
To more closely observe these effects, this investigation utilized a Bayesian analysis alongside 
an equivalent frequentist analysis in an attempt to describe the results from both approaches. 
This allowed for comparisons between the approaches and provides an example of what a 
Bayesian analysis looks like in the field of exercise science where this approach is becoming 
more prevalent (2). Bayesian statistics utilize probability to express the likelihood of an event 
(4). Through most of the 20th century, Bayesian statistics were not utilized due to the great 
difficulty in hand calculating results (9), and frequentist statistics became more commonly 
taught and accepted by the scientific community. Now that Bayesian analysis can be easily 
calculated using modern computer software it is a viable and possibly more appropriate method 
of describing data in some scientific fields (8). 
 
METHODS 
 
Participants 
Eighteen recreationally active men (21.4 ± 1.4 yr.; 175.5 ± 5.7 cm; 84.8 ± 11.7 kg; 28.8 ± 4.6 l·min-

1) volunteered to participate in this study. Six were not included in this final analysis due to 
incomplete data sets (n = 2) or calculated AOD values falling below zero (n = 4). All participants 
met the physical activity recommendations of the American College of Sports Medicine to be 
classified as recreationally active exercising at least 3-5 times per week. To eliminate residual 
fatigue and soreness during testing, participants were asked to refrain from any strenuous 
activity within 48 hours prior to testing. Before enrolling in the study, participants completed a 
Confidential Medical and Activity Questionnaire, as well as a Physical Activity Readiness 
Questionnaire (PAR-Q), to determine if they had any physical limitations that would keep them 
from performing any of the study procedures. Participants were asked to maintain their normal 
diet and, if any, nutritional supplementation consistent throughout the study. Written informed 
consent was obtained from all participants prior to testing, and the procedures were approved 
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by the university’s institutional review board. "This research was carried out fully in accordance 
to the ethical standards of the International Journal of Exercise Science" (21). 
 
Protocol 
An acute cross-over design was used in this investigation to examine the effects of normobaric 
hypoxia on upper body ergometry performance. Participants visited the laboratory on seven 
occasions consisting of a familiarization trial, two days of graded exercise testing (GXT) [one in 
normobaric normoxia (N) and one in normobaric hypoxia (H)], and four days of time to 
exhaustion trials (TTE) randomized for intensity and environment. N and H sessions were 
conducted at a simulated altitude of 500 m (FiO2 = 0.201, normoxic condition) and 3250 m (FiO2 

= 0.14, hypoxic condition), respectively. Participants performed all exercise inside of a large 
transparent cubicle (At-Home Cubicle, Hypoxico, Inc., New York, NY, USA), which were 
connected to altitude generators (Everest Summit II Hypoxico, Inc., New York, NY, USA) and 
were blinded to their environment. Familiarization of the GXT was completed by all participants 
to aid in conformity between sessions. Cranking cadence was standardized at 50 revolutions per 
minute (RPM) for all protocols, and testing sessions were preceded by a five-minute warm-up 
at 50W. The testing environment was monitored via the metabolic gas analyzer’s environmental 
sensor with average values of temperature (24.5 ± 1.87 ˚C), relative humidity (37.7 ± 6.6 %), and 
barometric pressure (756.8 ± 4.7). 
 
GXTs were performed by all participants over two visits separated by at least 48 hours in both 
N and H. The GXT was performed on a cycle ergometer (891E, Monark Upper Body Ergometer, 
Vansbro, Sweden) to determine peak power output (PPO) in watts (W) and peak oxygen 
consumption (V ̇O2peak) in liters per minute (l·min-1) for both environmental conditions. The 
GXT protocol consisted of an initial work-rate of 50W for three minutes with 20W increases 
every two minutes. 
 
Four days of TTE trials, randomized by intensity and environmental conditions, were performed 
by all participants. Intensities were set at 110% and 120% of PPO achieved during the GXT and 
performed at least 48 hours apart and in both conditions. Oxygen saturation was measured to 
confirm environment acclimation following a three-minute warm-up at 50 watts and 
immediately before the trial. During the GXT and TTE trials, participants viewed their RPM to 
maintain the cadence but were blinded to the environment and their performance. TTE was 
determined to the second of volitional fatigue or failure to maintain a 50 RPM cranking cadence 
for more than five seconds. 
 
Accumulated Oxygen Deficit (L·min-1) was calculated as the difference between predicted O2 
consumption and measured O2 consumption during the TTE trials. Predicted O2 consumption 
was extrapolated from regression equations calculated using O2 demands at differing power 
outputs during the GXT tests in both normobaric normoxia and normobaric hypoxia (20). 
Anaerobic energy system contribution (%AN) was calculated as [1-(actual O2 consumed 
/predicted O2)] × 100. Both AOD and %AN were calculated in three conditions, normoxia using 
the normoxia GXT regression, hypoxia using the hypoxia GXT regression, and hypoxia using 
the normoxia GXT regression equation.  
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Statistical Analysis 
Two separate Bayesian two-way repeated measures ANOVA were conducted to evaluate AOD 
and %AN using. The effect of intensity and regression equation formula (Intensity x Formula) 
on accumulated oxygen deficit (AOD) and percent anaerobic energy system contribution (%AN) 
were examined with the null hypothesis indicating no difference across intensities or between 
regression formulas, and the alternative hypothesis indicating a difference between intensities 
and formula. Bayes factors were evaluated using the criteria recommended by Kass & Raftery 
(16), including weak = 3 or below moderate = 4-10, and strong = 11-30+ . Bayesian inferences 
were interpreted according to recently developed guidance from (28). For comparison, 
frequentist/classical two-way repeated measures ANOVA was also used to evaluate AOD and 
%AN. Normal distribution of all dependent variables was confirmed using Shapiro-Wilk test. 
Mauchly’s test of sphericity indicated that the assumption of sphericity was not violated for 
regression formulas χ2 (2) = 2.281, p < .320. A power analysis conducted with G*POWER 3.1 
(Universitat Kiel, Germany) determined that 15 participants were needed in the present study 
for a power of .80, with an effect size of .8 and an α = 0.05. An open-source statistical software 
(JASP Team, 2019) was used for all analysis with an alpha level of α = 0.05 used for all frequentist 
analyses. 
 
RESULTS 
 
The Intensity + Formula interaction for AOD had a Bayes Factor of 4.705, meaning that the 
alternative hypothesis is more likely than the null hypothesis. Post hoc testing revealed an 
alternative hypothesis with a posterior odds of 191051.430 for intensity, indicating support for 
increases between 110% and 120% PPO. Post hoc testing for regression formulas revealed 
posterior odds of 11.698, indicating that the alternative hypothesis is about twelve times more 
likely. This states that there is a difference between AOD for hypoxia (1.217 ± .525 L·min-1, CI; 
0.982-1.541) and hypoxia using the normoxia equation (1.448 ± .551 L·min-1, CI; .901-1.533).  
 
The Intensity + Formula interaction for %AN had a Bayes Factor of 4.106, meaning that the 
alternative hypothesis is more likely than the null hypothesis. Post hoc testing revealed an 
alternative hypothesis with a posterior odds of 6.277e + 7 for intensity, indicating support for 
differences between 110% and 120% of peak power output. Post hoc testing for regression 
formulas revealed posterior odds of 5.233 or about five times the likelihood for the alternative 
hypothesis stating that there is a difference between %AN measured in hypoxia (20.781 ± 
8.198%, CI; 15.341-26.221) and hypoxia using the normoxia equation (23.969 ± 7.123%, CI; 19.242-
28.696). 
 
Frequentist repeated measures ANOVA for AOD revealed a significant main effects for 
Intensity [F(1,11) = 19.12, p = .001] with 120%PPO being greater than 110%PPO (mean = .422; SE 
= .096; p = .001), but no main effect for Formula [F(2,22) = 2.087, p = .148] and no significant 
interaction [F(2,22) = .087, p = .917]. Repeated measures ANOVA for %AN revealed significant 
main effects for Intensity [F(1,11) = 38.429, p = .001] but not Formula [F(2,22) = 2.067, p = .150], 
or interaction [F(2,22) = .582, p = .567]. Post hoc analysis for Intensity revealed that 110% PPO 
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produced significantly lower values than 120% PPO (mean difference = -8.967 ± 1.446%; p = 
.001).  
 
Multiple paired Cumming plots were generated for AOD and %AN using Estimationstats web 
application (15), allowing visual comparison of differences between formulas. See (Figure 1, 
Figure 2).  
 

 
Figure 1. The paired mean difference for 4 comparisons is shown in the above Cumming estimation plot. The raw 
data is plotted on the upper axes; each paired set of observations is connected by a line. On the lower axes, each 
paired mean difference is plotted as a bootstrap sampling distribution. Mean differences are depicted as dots; 95% 
confidence intervals are indicated by the ends of the vertical error bars. AOD is represented in three conditions: N, 
H, and H using the N regression equation (Z), and two intensities 110% and 120%. 
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Figure 2. The paired mean difference for 4 comparisons is shown in the above Cumming estimation plot. The raw 
data is plotted on the upper axes; each paired set of observations is connected by a line. On the lower axes, each 
paired mean difference is plotted as a bootstrap sampling distribution. Mean differences are depicted as dots; 95% 
confidence intervals are indicated by the ends of the vertical error bars. Percent Anaerobic Contribution is 
represented in three conditions: N, H, and H using the N regression equation (Z), and two intensities 110% and 
120%. 
 
DISCUSSION 
 
This investigation demonstrated different AOD and %AN values depending on if the predicted 
oxygen consumption was extrapolated from a normoxic or hypoxic environment. The results 
provide strong evidence that there were differences between intensities and moderate evidence 
that there was a difference depending on which regression equation was used to calculate both 
AOD and %AN. Using the regression equation calculated in normoxia to estimate AOD and 
%AN in hypoxia resulted in higher values for AOD and %AN compared to using the hypoxia 
regression equation during exercise in hypoxia. The Bayesian analysis provided moderate 
evidence that there are differences between regression formulas for both AOD and %AN (Table 
1).  
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Table 1. Accumulated Oxygen Deficit and Anaerobic Percent Values per Regression Formula 
 AOD (L·min-1) % AN 
N 
110 
120 
H 
110 
120 

 
1.11 1± .53± .69 

1.01 ± .53 
 

1.28 ± .50 
1.55 ± .34 

 
19.8 ± 8.3 
25.2 ± 7.1 

  110 
 

1.11 ± .69 15.2 ± 10.1 
   120 1.01 ± .53 16.5 ± 8.5 

H   
  110 1.28 ± .50 19.8 ± 8.3 
  120  1.55 ± .34 25.2 ± 7.1 
HN   
  110 1.42 ± .43 25.0 ± 7.9 
  120 1.68 ± .38 28.1 ± 5.9 

AOD: Accumulated oxygen deficit (L·min-1); %AN: Anaerobic Energy System Contribution; N: Normoxia; H: 
Hypoxia; HN : Hypoxia using the Normoxia Regression Equation. 
 
If these data were evaluated from on the frequentist perspective, a non-significant p-value for 
differences between AOD and %AN and the regression formulas would have been the primary 
finding, thereby limiting the identification of potentially meaningful methodological 
considerations.  
 
This is the first investigation to look at the effects of hypoxia on AOD in the upper-body. These 
data provide conflicting results from what is observed in the lower-body where AOD is not 
affected by acute moderate hypoxia during treadmill exercise while using both normoxia and 
hypoxia regression equations (10, 11). The conflicting results may be driven by the propensity 
of the upper body to rely on anaerobic resources earlier during exercise compared to the lower-
body (25). The upper body musculature has a greater amount of type II fibers when compared 
with the lower body (25), and the prime movers during upper-body ergometry are the arms and 
shoulders (26). Furthermore, significant correlations exist between arm lean body mass and 
anaerobic alactic energy (18). During high intensity upper-body exercise, the anaerobic lactic 
system reportedly contributes 15% more than during identical lower-body exercise (18). These 
differences and their influence on AOD during hypoxia provide an opportunity for further 
investigation.  
 
Another methodological consideration that requires elucidation is whether the relationship 
between oxygen demand and work rate is linear or curvilinear at intensities greater than 90% 
during upper-body ergometry. Past investigation into this subject have determined that this 
relationship is upwardly curvilinear during running (13). Equivocal results are seen during 
lower body cycling where some report an exponential relationship between oxygen demand 
and exercise intensity (23), while more recently others report a linear relationship (13). More 
direct investigations into oxygen demand at supramaximal intensities during upper-body 
ergometry are needed to make determinations on this relationship.  
 
The population used in this study consisted of recreationally trained men who were likely 
unaccustomed to upper-body specific training, particularly the use of an upper-body ergometer. 
Although these participants were familiarized with the equipment and protocol, future studies 
may want to utilize athletes from upper-body dominant sports (e.g., rowing, grappling, and 
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climbing). These athletes may be more economical with their movement leading to differences 
in energy system contribution (7). Finally, four participants were removed from this analysis 
due to AOD and/or AN% values falling below zero. It is possible that their training status, 
combined with the supramaximal nature of the exercise, contributed to this as indicated by 
others during lower body cycling (22).  
 
Conclusion: Using predicted oxygen consumption extrapolated from a normoxic environment 
during exercise in hypoxia may lead to the overestimation of AOD and %AN. Accumulated O2 
uptake is significantly decreased in moderate hypoxia (11, 3), possibly influencing the 
differences between AOD and %AN calculations. Therefore, it may be inappropriate to use 
regression equations extrapolated from GXT in normoxia to evaluate AOD in hypoxia. 
However, further evaluation is needed to elucidate if this is true across populations and 
intensities. In some instances, data may be more appropriately described using a Bayesian 
analysis instead of a traditional frequentist methodology as demonstrated in this investigation. 
This investigation provides an example of when Bayesian statistics may be applicable in the field 
of exercise science.  
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