36 research outputs found

    The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyDoppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T ≤ 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.Peer reviewedFinal Accepted Versio

    Lineage‐based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models

    Get PDF
    Process‐based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass‐dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species‐level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance‐related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage‐based functional types (LFTs), situated between species‐level trait data and PFT‐level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Stability of cardiodynamic and some blood parameters in the baboon following intravenous anaesthesia with ketamine and diazepam

    No full text
    The stability of cardiodynamic and some blood parameters during a slow, continuous infusion of a combination of ketamine and diazepam is reported. Contractility (dP/dt), myocardial relaxation (Tln), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), arterial blood pressure and certain blood parameters were assessed in 3 male and 3 female juvenile baboons (Papio ursinus). Anaesthesia was induced with 15 mg/kg ketamine IM and maintained with a continuous IV infusion (40-60 mℓ/h) of ketamine and diazepam. The mixture consisted of 2 mℓ ketamine (100 mg/mℓ), 2 mℓ diazepam (5 mg/mℓ) and 50 mℓ saline. A period of 75 + 10 min was allowed for preparation of the animals, after which lead II of the ECG, femoral artery blood pressure and left ventricular pressure were recorded at 15-min intervals for a period of 2 h: the total duration of anaesthesia was 195 min. Arterial blood samples were analysed at 30-min intervals for blood gases, electrolytes, glucose and insulin. Left ventricular parameters were derived from the left ventricular pressure curve. Tln, LVSP and LVEDP showed small fluctuations. Contractility decreased (p < 0.037) at the 195-min interval. No arrhythmias or ECG changes were seen, while blood pressure decreased gradually. Serum calcium concentration decreased and blood glucose levels increased gradually over time. Anaesthesia and analgesia were sufficient and no other drugs were necessary. The animals appeared sedated and dazed 60-80 min after the procedure. A continuous infusion of a combination of ketamine and diazepam for a duration of 150 min can provide stable anaesthesia for cardiodynamic measurements

    Functional diversification enabled grassy biomes to fill global climate space

    No full text
    Global change impacts on the Earth System are typically evaluated using biome classifications based on trees and forests. However, during the Cenozoic, many terrestrial biomes were transformed through the displacement of trees and shrubs by grasses. While grasses comprise 3% of vascular plant species, they are responsible for more than 25% of terrestrial photosynthesis. Critically, grass dominance alters ecosystem dynamics and function by introducing new ecological processes, especially surface fires and grazing. However, the large grassy component of many global biomes is often neglected in their descriptions, thereby ignoring these important ecosystem processes. Furthermore, the functional diversity of grasses in vegetation models is usually reduced to C3 and C4 photosynthetic plant functional types, omitting other relevant traits. Here, we compile available data to determine the global distribution of grassy vegetation and key traits related to grass dominance. Grassy biomes (where > 50% of the ground layer is covered by grasses) occupy almost every part of Earth’s vegetated climate space, characterising over 40% of the land surface. Major evolutionary lineages of grasses have specialised in different environments, but species from only three grass lineages occupy 88% of the land area of grassy vegetation, segregating along gradients of temperature, rainfall and fire. The environment occupied by each lineage is associated with unique plant trait combinations, including C3 and C4 photosynthesis, maximum plant height, and adaptations to fire and aridity. There is no single global climatic limit where C4 grasses replace C3 grasses. Instead this ecological transition varies biogeographically, with continental disjunctions arising through contrasting evolutionary histories
    corecore