9,252 research outputs found

    On the anomalous X-ray afterglows of GRB 970508 and GRB 970828

    Get PDF
    Recently, BeppoSAX and ASCA have reported an unusual resurgence of soft X-ray emission during the afterglows of GRB 970508 and GRB 970828, together with marginal evidence for the existence of Fe-lines in both objects. We consider the implications of the existence of a torus of iron-rich material surrounding the sites of gamma ray bursts as would be expected in the SupraNova model; in particular, we show that the fireball will quickly hit this torus, and bring it to a temperature ~3x10^7 K. Bremsstrahlung emission from the heated up torus will cause a resurgence of the soft X-ray emission with all expected characteristics (flux level, duration and spectral hardening with time) identical to those observed during the reburst. Also, thermal emission from the torus will account for the observed iron line flux. These events are also observable, for instance by new missions such as SWIFT, when beaming away from our line sight makes us miss the main burst, as Fast (soft) X-ray Transients, with durations ~10^3 s, and fluences ~10^-7-10^-4 erg cm^-2. This model provides evidence in favor of the SupraNova model for Gamma Ray Bursts.Comment: To appear in MN Pink pages, MN-LateX, no figure

    Condition-based maintenance at both scheduled and unscheduled opportunities

    Get PDF
    Motivated by original equipment manufacturer (OEM) service and maintenance practices we consider a single component subject to replacements at failure instances and two types of preventive maintenance opportunities: scheduled, which occur due to periodic system reviews of the equipment, and unscheduled, which occur due to failures of other components in the system. Modelling the state of the component appropriately and incorporating a realistic cost structure for corrective maintenance as well as condition-based maintenance (CBM), we derive the optimal CBM policy. In particular, we show that the optimal long-run average cost policy for the model at hand is a control-limit policy, where the control limit depends on the time until the next scheduled opportunity. Furthermore, we explicitly calculate the long-run average cost for any given control-limit time dependent policy and compare various policies numerically.Comment: published at proceedings of the 9th IMA International Conference on Modelling in Industrial Maintenance and Reliability (MIMAR), 201

    Applications of the Generalised Langevin Equation: towards a realistic description of the baths

    Get PDF
    The Generalised Langevin Equation (GLE) method, as developed in Ref. [Phys. Rev. B 89, 134303 (2014)], is used to calculate the dissipative dynamics of systems described at the atomic level. The GLE scheme goes beyond the commonly used bilinear coupling between the central system and the bath, and permits us to have a realistic description of both the dissipative central system and its surrounding bath. We show how to obtain the vibrational properties of a realistic bath and how to convey such properties into an extended Langevin dynamics by the use of the mapping of the bath vibrational properties onto a set of auxiliary variables. Our calculations for a model of a Lennard-Jones solid show that our GLE scheme provides a stable dynamics, with the dissipative/relaxation processes properly described. The total kinetic energy of the central system always thermalises toward the expected bath temperature, with appropriate fluctuation around the mean value. More importantly, we obtain a velocity distribution for the individual atoms in the central system which follows the expected canonical distribution at the corresponding temperature. This confirms that both our GLE scheme and our mapping procedure onto an extended Langevin dynamics provide the correct thermostat. We also examined the velocity autocorrelation functions and compare our results with more conventional Langevin dynamics.Comment: accepted for publication in PR

    Modelling a Bistable System Strongly Coupled to a Debye Bath: A Quasiclassical Approach Based on the Generalised Langevin Equation

    Get PDF
    Bistable systems present two degenerate metastable configurations separated by an energy barrier. Thermal or quantum fluctuations can promote the transition between the configurations at a rate which depends on the dynamical properties of the local environment (i.e., a thermal bath). In the case of classical systems, strong system-bath interaction has been successfully modelled by the Generalised Langevin Equation (GLE) formalism. Here we show that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014) can be extended to include some crucial aspects of the quantum fluctuations. In particular, the expected isotopic effect is observed along with the convergence of the quantum and classical transition rates in the strong coupling limit. Saturation of the transition rates at low temperature is also retrieved, in qualitative, yet not quantitative, agreement with the analytic predictions. The discrepancies in the tunnelling regime are due to an incorrect sampling close to the barrier top. The domain of applicability of the quasiclassical GLE is also discussed.Comment: 21 pages, 5 figures. Presented at the NESC16 conference: Advances in theory and simulation of non-equilibrium system

    Relativistic precession around rotating neutron stars: Effects due to frame-dragging and stellar oblateness

    Get PDF
    General relativity predicts that a rotating body produces a frame-dragging (or Lense-Thirring) effect: the orbital plane of a test particle in a non-equatorial orbit precesses about the body's symmetry axis. In this paper we compute the precession frequencies of circular orbits around rapidly rotating neutron stars for a variety of masses and equations of state. The precession frequencies computed are expressed as numerical functions of the orbital frequency observed at infinity. The post-Newtonian expansion of the exact precession formula is examined to identify the relative magnitudes of the precession caused by the Lense-Thirring effect, the usual Newtonian quadrupole effect and relativistic corrections. The first post-Newtonian correction to the Newtonian quadrupole precession is derived in the limit of slow rotation. We show that the post-Newtonian precession formula is a good approximation to the exact precession close to the neutron star in the slow rotation limit (up to \sim 400 Hz in the present context). The results are applied to recent RXTE observations of neutron star low-mass X-ray binaries, which display kHz quasi-periodic oscillations and, within the framework of beat frequency models, allow the measurement of both the neutron star spin frequency and the Keplerian frequency of the innermost ring of matter in the accretion disk around it. For a wide range of realistic equations of state, we find that the predicted precession frequency of this ring is close to one half of the low-frequency (\sim 20 - 35 Hz) quasi-periodic oscillations seen in several Atoll sources.Comment: 35 pages including 10 figures and 6 tables. To appear in the Astrophysical Journa

    DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis.

    Get PDF
    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions

    SMA applications in an innovative multishot deployment mechanism

    Get PDF
    An innovative Deployment and Retraction hinge Mechanism (DARM) in the frame of a technological program is examined. The mechanism includes two restraint/release devices, which enable it to be stable in its stowed or deployed position while sustaining all associated loads, and to carry its payload by remote command. The main characteristics of the DARM are as follows: deployment and retraction movements are spring actuated; the available amount of functional sequences is almost unlimited; and no use of electrical motors is made. These features were accomplished by: the application of a special kinematic scheme to the mechanical connection between the spring motor and the swivel head arm; and the use of shape memory alloys (SMA) actuators for both release and spring recharge functions. DARM is thus a mechanism which can find many applications in the general space scenario of in-orbit maintenance and servicing. In such a frame, the DARM typical concept, which has a design close to very simple one-shot deployment mechanisms, has a good chance to replace existing analog machines. Potential items that could be moved by DARM are: booms for satellite instruments; antenna reflector tips; entire antenna reflectors; and solar panels
    corecore