345 research outputs found
Strange Stars with a Density-Dependent Bag Parameter
We have studied strange quark stars in the framework of the MIT bag model,
allowing the bag parameter B to depend on the density of the medium. We have
also studied the effect of Cooper pairing among quarks, on the stellar
structure. Comparison of these two effects shows that the former is generally
more significant. We studied the resulting equation of state of the quark
matter, stellar mass-radius relation, mass-central-density relation,
radius-central-density relation, and the variation of the density as a function
of the distance from the centre of the star. We found that the
density-dependent B allows stars with larger masses and radii, due to
stiffening of the equation of state. Interestingly, certain stellar
configurations are found to be possible only if B depends on the density. We
have also studied the effect of variation of the superconducting gap parameter
on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in
Phys. Rev. (D
PROFIT: a new alternative for emission-line PROfile FITting
I briefly describe a simple routine for emission-line profiles fitting by
Gaussian curves or Gauss-Hermite series. The PROFIT (line-PROfile FITting)
routine represent a new alternative for use in fits data cubes, as those from
Integral Field Spectroscopy or Fabry-Perot Interferometry, and may be useful to
better study the emission-line flux distributions and gas kinematics in
distinct astrophysical objects, such as the central regions of galaxies and
star forming regions. The PROFIT routine is written in IDL language and is
available at http://www.ufsm.br/rogemar/software.html.
The PROFIT routine was used to fit the [Fe II]1.257um emission-line profiles
for about 1800 spectra of the inner 350 pc of the Seyfert galaxy Mrk1066
obtained with Gemini NIFS and shows that the line profiles are better
reproduced by Gauss-Hermite series than by the commonly used Gaussian curves.
The two-dimensional map of the h_3 Gauss-Hermite moment shows its highest
absolute values in regions close to the edge of the radio structure. These high
values may be originated in an biconical outflowing gas associated with the
radio jet - previously observed in the optical [O III] emission. The analysis
of this kinematic component indicates that the radio jet leaves the center of
the galaxy with the north-west side slightly oriented towards us and the
south-east side away from us, being partially hidden by the disc of the galaxy.Comment: Accepted for publication Astrophysics & Space Science - 7 pges; 4
Fig
Growing Environmental Activists: Developing Environmental Agency and Engagement Through Children’s Fiction.
We explore how story has the potential to encourage environmental engagement and a sense of agency provided that critical discussion takes place. We illuminate this with reference to the philosophies of John Macmurray on personal agency and social relations; of John Dewey on the primacy of experience for philosophy; and of Paul Ricoeur on hermeneutics, dialogue, dialectics and narrative. We view the use of fiction for environmental understanding as hermeneutic, a form of conceptualising place which interprets experience and perception. The four writers for young people discussed are Ernest Thompson Seton, Kenneth Grahame, Michelle Paver and Philip Pullman. We develop the concept of critical dialogue, and link this to Crick's demand for active democratic citizenship. We illustrate the educational potential for environmental discussions based on literature leading to deeper understanding of place and environment, encouraging the belief in young people that they can be and become agents for change. We develop from Zimbardo the key concept of heroic resister to encourage young people to overcome peer pressure. We conclude with a call to develop a greater awareness of the potential of fiction for learning, and for writers to produce more focused stories engaging with environmental responsibility and activism
WD + MS systems as the progenitor of SNe Ia
We show the initial and final parameter space for SNe Ia in a () plane and find that the positions of some famous
recurrent novae, as well as a supersoft X-ray source (SSS), RX J0513.9-6951,
are well explained by our model. The model can also explain the space velocity
and mass of Tycho G, which is now suggested to be the companion star of Tycho's
supernova. Our study indicates that the SSS, V Sge, might be the potential
progenitor of supernovae like SN 2002ic if the delayed dynamical-instability
model due to Han & Podsiadlowski (2006) is appropriate. Following the work of
Meng, Chen & Han (2009), we found that the SD model (WD + MS) with an optically
thick wind can explain the birth rate of supernovae like SN 2006X and reproduce
the distribution of the color excess of SNe Ia. The model also predicts that at
least 75% of all SNe Ia may show a polarization signal in their spectra.Comment: 6 pages, 2 figures, accepted for publication in Astrophysics & Space
Science (Proceeding of the 4th Meeting on Hot Subdwarf Stars and Related
Objects, edited by Zhanwen Han, Simon Jeffery & Philipp Podsiadlowski
Computational Nuclear Physics and Post Hartree-Fock Methods
We present a computational approach to infinite nuclear matter employing
Hartree-Fock theory, many-body perturbation theory and coupled cluster theory.
These lectures are closely linked with those of chapters 9, 10 and 11 and serve
as input for the correlation functions employed in Monte Carlo calculations in
chapter 9, the in-medium similarity renormalization group theory of dense
fermionic systems of chapter 10 and the Green's function approach in chapter
11. We provide extensive code examples and benchmark calculations, allowing
thereby an eventual reader to start writing her/his own codes. We start with an
object-oriented serial code and end with discussions on strategies for porting
the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An
advanced course in computational nuclear physics: Bridging the scales from
quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck,
Editor
Cerebral perfusion in sepsis
This article is one of ten reviews selected from the Yearbook of Intensive Care and Emergency Medicine 2010 (Springer Verlag) and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/yearbook. Further information about the Yearbook of Intensive Care and Emergency Medicine is available from http://www.springer.com/series/2855
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
Is symmetry identity?
Wigner found unreasonable the "effectiveness of mathematics in the natural
sciences". But if the mathematics we use to describe nature is simply a coded
expression of our experience then its effectiveness is quite reasonable. Its
effectiveness is built into its design. We consider group theory, the logic of
symmetry. We examine the premise that symmetry is identity; that group theory
encodes our experience of identification. To decide whether group theory
describes the world in such an elemental way we catalogue the detailed
correspondence between elements of the physical world and elements of the
formalism. Providing an unequivocal match between concept and mathematical
statement completes the case. It makes effectiveness appear reasonable. The
case that symmetry is identity is a strong one but it is not complete. The
further validation required suggests that unexpected entities might be
describable by the irreducible representations of group theory
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
Spectroscopic Coronal Observations during the Total Solar Eclipse of 11 July 2010
The flash spectrum of the solar chromosphere and corona was measured with a
slitless spectrograph before, after, and during the totality of the solar
eclipse, of 11 July 2010, at Easter Island, Chile. This eclipse took place at
the beginning of the Solar Cycle 24, after an extended minimum of solar
activity. The spectra taken during the eclipse show a different intensity ratio
of the red and green coronal lines compared with those taken during the total
solar eclipse of 1 August 2008, which took place towards the end of the Solar
Cycle 23. The characteristic coronal forbidden emission line of forbidden Fe
XIV (5303 {\AA}) was observed on the east and west solar limbs in four areas
relatively symmetrically located with respect to the solar rotation axis.
Subtraction of the continuum flash-spectrum background led to the
identification of several extremely weak emission lines, including forbidden Ca
XV (5694 {\AA}), which is normally detected only in regions of very high
excitation, e.g., during flares or above large sunspots. The height of the
chromosphere was measured spectrophotometrically, using spectral lines from
light elements and compared with the equivalent height of the lower
chromosphere measured using spectral lines from heavy elements.Comment: 14 pages, 8 figures, 1 table; Solar Physics, 2012, Februar
- …