10,870 research outputs found

    The effect of magnetic dipolar interactions on the interchain spin wave dispersion in CsNiF_3

    Full text link
    Inelastic neutron scattering measurements were performed on the ferromagnetic chain system CsNiF_3 in the collinear antiferromagnetic ordered state below T_N = 2.67K. The measured spin wave dispersion was found to be in good agreement with linear spin wave theory including dipolar interactions. The additional dipole tensor in the Hamiltonian was essential to explain some striking phenomena in the measured spin wave spectrum: a peculiar feature of the dispersion relation is a jump at the zone center, caused by strong dipolar interactions in this system. The interchain exchange coupling constant and the planar anisotropy energy were determined within the present model to be J'/k_B = -0.0247(12)K and A/k_B = 3.3(1)K. This gives a ratio J/J' \approx 500, using the previously determined intrachain coupling constant J/k_B = 11.8$. The small exchange energy J' is of the same order as the dipolar energy, which implies a strong competition between the both interactions.Comment: 18 pages, TeX type, 7 Postscript figures included. To be published in Phys. Rev.

    Categorification of persistent homology

    Full text link
    We redevelop persistent homology (topological persistence) from a categorical point of view. The main objects of study are diagrams, indexed by the poset of real numbers, in some target category. The set of such diagrams has an interleaving distance, which we show generalizes the previously-studied bottleneck distance. To illustrate the utility of this approach, we greatly generalize previous stability results for persistence, extended persistence, and kernel, image and cokernel persistence. We give a natural construction of a category of interleavings of these diagrams, and show that if the target category is abelian, so is this category of interleavings.Comment: 27 pages, v3: minor changes, to appear in Discrete & Computational Geometr

    A Logic of Blockchain Updates

    Full text link
    Blockchains are distributed data structures that are used to achieve consensus in systems for cryptocurrencies (like Bitcoin) or smart contracts (like Ethereum). Although blockchains gained a lot of popularity recently, there is no logic-based model for blockchains available. We introduce BCL, a dynamic logic to reason about blockchain updates, and show that BCL is sound and complete with respect to a simple blockchain model

    On The Evolution of Magnetic White Dwarfs

    Get PDF
    We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have then employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B > 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection owing to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff < 10,000 K cool significantly slower than non-magnetic degenerates.Comment: 11 pages, 12 figures, accepted for publication in the Astrophysical Journa

    Preserving entanglement under decoherence and sandwiching all separable states

    Get PDF
    Every entangled state can be perturbed, for instance by decoherence, and stay entangled. For a large class of pure entangled states, we show how large the perturbation can be. Our class includes all pure bipartite and all maximally entangled states. For an entangled state, E, the constucted neighborhood of entangled states is the region outside two parallel hyperplanes, which sandwich the set of all separable states. The states for which these neighborhoods are largest are the maximally entangled ones. As the number of particles, or the dimensions of the Hilbert spaces for two of the particles increases, the distance between two of the hyperplanes which sandwich the separable states goes to zero. It is easy to decide if a state Q is in the neighborhood of entangled states we construct for an entangled state E. One merely has to check if the trace of EQ is greater than a constant which depends upon E and which we determine.Comment: Corrected first author's e-mail address. All the rest remains unchange

    Transition Density and Pressure at the Inner Edge of Neutron Star Crusts

    Full text link
    Using the nuclear symmetry energy that has been recently constrained by the isospin diffusion data in intermediate-energy heavy ion collisions, we have studied the transition density and pressure at the inner edge of neutron star crusts, and they are found to be 0.040 fm3^{-3} ρt0.065\leq \rho_{t}\leq 0.065 fm3^{-3} and 0.01 MeV/fm3^{3} Pt0.26\leq P_{t}\leq 0.26 MeV/fm3^{3}, respectively, in both the dynamical and thermodynamical approaches. We have also found that the widely used parabolic approximation to the equation of state of asymmetric nuclear matter gives significantly higher values of core-crust transition density and pressure, especially for stiff symmetry energies. With these newly determined transition density and pressure, we have obtained an improved relation between the mass and radius of neutron stars.Comment: 7 pages, 3 figures, proceeding of "The International Workshop on Nuclear Dynamics in Heavy-Ion Reactions and the Symmetry Energy (IWND2009)

    Global equality of resources and the problem of valuation

    Get PDF
    The principle that every individual on the planet has a claim to an equal share of Earth’s natural resources has an intuitive attraction. Yet the Principle of Natural Resource Equality is not without its problems. This article focuses on the problem of valuation. Unless and until its adherents are able to develop an adequate theoretical mechanism for determining the comparative value of two or more bundles of natural resources the principle lacks applicability and persuasive force. Three adequacy constraints on such a mechanism are presented and then applied to a theorisation of the Principle of Natural Resource Equality that I have already expounded elsewhere: Global Equality of Resources. In each case I try to argue that Global Equality of Resources could satisfy the adequacy constraint, provided that both this theory and the relevant constraint are properly understood
    corecore