807 research outputs found

    Sneutrino-induced like sign dilepton signal with conserved R-parity

    Get PDF
    Lepton number violation could be manifest in the sneutrino sector of supersymmetric extensions of the standard model with conserved R-parity. Then sneutrinos decay partly into the ``wrong sign charged lepton'' final state, if kinematically accessible. In sneutrino pair production or associated single sneutrino production, the signal then is a like sign dilepton final state. Under favourable circumstances, such a signal could be visible at the LHC or a next generation linear collider for a relative sneutrino mass-splitting of order O(0.001){\cal O}(0.001) and sneutrino width of order O{\cal O}(1 GeV). On the other hand, the like sign dilepton event rate at the TEVATRON is probably too small to be observable.Comment: 19 pages, 14 Figures. Section about LSD at LHC and TEVATRON added. Previous Title "Single sneutrino production and the wrong charged lepton signal

    Light Lepton Number Violating Sneutrinos and the Baryon Number of the Universe

    Get PDF
    Recent results of neutrino oscillation experiments point to a nonvanishing neutrino mass. Neutrino mass models favour Majorana-type neutrinos. In such circumstances it is natural that the supersymmetric counterpart of the neutrino, the sneutrino, bears also lepton number violating properties. On the other hand, the fact that the universe exhibits an asymmetry in the baryon and antibaryon numbers poses constraints on the extent of lepton number violation in the light sneutrino sector if the electroweak phase transition is second or weak first order. From the requirement that the Baryon Asymmetry of the Universe should not be washed out by sneutrino induced lepton number violating interactions and sphalerons below the critical temperature of the electroweak phase transition we find that the mass splitting of the light sneutrino mass states is compatible with the sneutrino Cold Dark Matter hypothesis only for heavy gauginos and opposite sign gaugino mass parameters.Comment: 13 pages, 4 figure

    Social preferences, accountability, and wage bargaining

    Get PDF
    We assess the extent of preferences for employment in a collective wage bargaining situation with heterogeneous workers. We vary the size of the union and introduce a treatment mechanism transforming the voting game into an individual allocation task. Our results show that highly productive workers do not take employment of low productive workers into account when making wage proposals, regardless of whether insiders determine the wage or all workers. The level of pro-social preferences is small in the voting game, while it increases as the game is transformed into an individual allocation task. We interpret this as an accountability effect

    Fluctuations in granular gases

    Full text link
    A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure

    The Mathematical Theory of Wavelets

    Full text link
    ABSTRACT. We present an overview of some aspects of the mathematical theory of wavelets. These notes are addressed to an audience of mathematicians familiar with only the most basic elements of Fourier Analysis. The material discussed is quite broad and covers several topics involving wavelets. Though most of the larger and more involved proofs are not included, complete references to them are provided. We do, however, present complete proofs for results that are new (in particular, this applies to a recently obtained characterization of “all ” wavelets in section 4). 1

    Lepton number violating interactions and their effects on neutrino oscillation experiments

    Full text link
    Mixing between bosons that transform differently under the standard model gauge group, but identically under its unbroken subgroup, can induce interactions that violate the total lepton number. We discuss four-fermion operators that mediate lepton number violating neutrino interactions both in a model-independent framework and within supersymmetry (SUSY) without R-parity. The effective couplings of such operators are constrained by: i) the upper bounds on the relevant elementary couplings between the bosons and the fermions, ii) by the limit on universality violation in pion decays, iii) by the data on neutrinoless double beta decay and, iv) by loop-induced neutrino masses. We find that the present bounds imply that lepton number violating neutrino interactions are not relevant for the solar and atmospheric neutrino problems. Within SUSY without R-parity also the LSND anomaly cannot be explained by such interactions, but one cannot rule out an effect model-independently. Possible consequences for future terrestrial neutrino oscillation experiments and for neutrinos from a supernova are discussed.Comment: 28 pages, 2 figures, Late

    Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

    Full text link
    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in χ20~χ10 \chi_2^0\to \tilde \ell \,\ell \to \ell \,\ell\,\chi_1^0 decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Working in the framework of the cMSSM extended by three right-handed neutrino superfields, we conduct a systematic analysis addressing the simultaneous implications of the SUSY seesaw for both high- and low-energy lepton flavour violation. We discuss how the confrontation of slepton mass splittings as observed at the LHC and low-energy LFV observables may provide important information about the underlying mechanism of LFV.Comment: 50 pages, 42 eps Figures, typos correcte

    Peaks and Troughs of Three-Dimensional Vestibulo-ocular Reflex in Humans

    Get PDF
    The three-dimensional vestibulo-ocular reflex (3D VOR) ideally generates compensatory ocular rotations not only with a magnitude equal and opposite to the head rotation but also about an axis that is collinear with the head rotation axis. Vestibulo-ocular responses only partially fulfill this ideal behavior. Because animal studies have shown that vestibular stimulation about particular axes may lead to suboptimal compensatory responses, we investigated in healthy subjects the peaks and troughs in 3D VOR stabilization in terms of gain and alignment of the 3D vestibulo-ocular response. Six healthy upright sitting subjects underwent whole body small amplitude sinusoidal and constant acceleration transients delivered by a six-degree-of-freedom motion platform. Subjects were oscillated about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5° in azimuth. Transients were delivered in yaw, roll, and pitch and in the vertical canal planes. Eye movements were recorded in with 3D search coils. Eye coil signals were converted to rotation vectors, from which we calculated gain and misalignment. During horizontal axis stimulation, systematic deviations were found. In the light, misalignment of the 3D VOR had a maximum misalignment at about 45°. These deviations in misalignment can be explained by vector summation of the eye rotation components with a low gain for torsion and high gain for vertical. In the dark and in response to transients, gain of all components had lower values. Misalignment in darkness and for transients had different peaks and troughs than in the light: its minimum was during pitch axis stimulation and its maximum during roll axis stimulation. We show that the relatively large misalignment for roll in darkness is due to a horizontal eye movement component that is only present in darkness. In combination with the relatively low torsion gain, this horizontal component has a relative large effect on the alignment of the eye rotation axis with respect to the head rotation axis

    HIV seroprevalence and its effect on outcome of moderate to severe burn injuries: A Ugandan experience

    Get PDF
    \ud \ud HIV infection in a patient with burn injuries complicates the care of both the patient and the treating burn team. This study was conducted to establish the prevalence of HIV among burn patients in our setting and to compare the outcome of these patients who are HIV positive with those who are HIV negative. This was a prospective cohort study involving burn injury patients admitted to Mulago Hospital between November 2005 and February 2006. Patients were stratified into HIV positive (exposed) group and HIV-negative (unexposed) group. Data was collected using a pre-tested coded questionnaire and analyzed using SPSS statistical computer software version 11.5. Of the 130 patients included in the study, 17 (13.1%) patients tested HIV positive and this formed the study (exposed) group. The remaining 113 patients (86.9%) formed the control (unexposed) group. In the HIV positive group, females outnumbered males by a ratio of 1.4:1 and the mean age was 28.4 ± 21.5 years (range 3 months-34 years). 64.7% of HIV positive patients reported to have risk factors for HIV infection. Of these, multiple sexual partners [Odds Ratio 8.44, 95% C.I. (3.87-143.23), P = 0.011] and alcoholism [Odds Ratio 8.34, 95% C.I. (5.76-17.82), P = 0.002] were found to be independently and significantly associated with increased risk to HIV infection. The mean CD4 count for HIV positive and HIV negative patients were 394 ± 328 cells/μL and 912 ± 234 cells/μL respectively which is statistically significant (P = 0.001). There was no difference in the bacteria cultured from the wounds of HIV positive and negative patients (P = 0.322). Patients with clinical signs of sepsis had lower CD4+ counts compared to patients without sepsis (P < 0.001). ). Skin grafting was carried out in 35.3% of HIV negative patients and 29.4% of HIV positive patients with no significant difference in skin graft take and the degree of healed burn on discharge was the same (P = 0.324). There was no significant difference in hospital stay between HIV positive and negative patients (P = 0.674). The overall mortality rate was 11.5%. Using multivariate logistic regression analysis, mortality rate was found to be independently and significantly related to the age of the patient, HIV positive with stigmata of AIDS, CD4 count, inhalation injury, %TBSA and severity of burn (p-value < 0.001). HIV infection is prevalent among burn injury patients in our setting and thus presents an occupational hazard to health care workers who care for these patients. All burn health care workers in this region need to practice universal precautions in order to reduce the risk of exposure to HIV infection and post-exposure prophylaxis should be emphasized. The outcome of burn injury in HIV infected patients is dependent upon multiple variables such as age of the patient, inhalation injury and %TBSA and not the HIV status alone

    Spatio-Temporal Dynamics of Human Intention Understanding in Temporo-Parietal Cortex: A Combined EEG/fMRI Repetition Suppression Paradigm

    Get PDF
    Inferring the intentions of other people from their actions recruits an inferior fronto-parietal action observation network as well as a putative social network that includes the posterior superior temporal sulcus (STS). However, the functional dynamics within and among these networks remains unclear. Here we used functional magnetic resonance imaging (fMRI) and high-density electroencephalogram (EEG), with a repetition suppression design, to assess the spatio-temporal dynamics of decoding intentions. Suppression of fMRI activity to the repetition of the same intention was observed in inferior frontal lobe, anterior intraparietal sulcus (aIPS), and right STS. EEG global field power was reduced with repeated intentions at an early (starting at 60 ms) and a later (∼330 ms) period after the onset of a hand-on-object encounter. Source localization during these two intervals involved right STS and aIPS regions highly consistent with RS effects observed with fMRI. These results reveal the dynamic involvement of temporal and parietal networks at multiple stages during the intention decoding and without a strict segregation of intention decoding between these networks
    corecore