19 research outputs found

    Genomic organisation of the Mal d 1 gene cluster on linkage group 16 in apple

    Get PDF
    European populations exhibit progressive sensitisation to food allergens, and apples are one of the foods for which sensitisation is observed most frequently. Apple cultivars vary greatly in their allergenic characteristics, and a better understanding of the genetic basis of low allergenicity may therefore allow allergic individuals to increase their fruit intake. Mal d 1 is considered to be a major apple allergen, and this protein is encoded by the most complex allergen gene family. Not all Mal d 1 members are likely to be involved in allergenicity. Therefore, additional knowledge about the existence and characteristics of the different Mal d 1 genes is required. In the present study, we investigated the genomic organisation of the Mal d 1 gene cluster in linkage group 16 of apple through the sequencing of two bacterial artificial chromosome clones. The results provided new information on the composition of this family with respect to the number and orientation of functional and pseudogenes and their physical distances. The results were compared with the apple and peach genome sequences that have recently been made available. A broad analysis of the whole apple genome revealed the presence of new genes in this family, and a complete list of the observed Mal d 1 genes is supplied. Thus, this study provides an important contribution towards a better understanding of the genetics of the Mal d 1 family and establishes the basis for further research on allelic diversity among cultivars in relation to variation in allergenicity

    Mutational analysis of amino acid positions crucial for IgE-binding epitopes of the major apple (Malus domestica) allergen, Mal d 1

    Get PDF
    Background: Individual amino acid residues of the major birch pollen allergen, Bet v 1, have been identified to be crucial for IgE recognition. The objective of the present study was to evaluate whether this concept was applicable for the Bet v 1-homologous apple allergen, Mal d 1. Methods: A Mal d 1 five-point mutant was produced by PCR techniques, cloned into pMW 172 and expressed in Escherichia coli BL21(DE3) cells. To evaluate the allergenic properties of the engineered protein compared to Mal d 1 wild-type IgE immunoblotting, ELISA, peripheral blood monocytes proliferation assays, and skin prick tests were performed. Results: The Mal d 1 mutant showed reduced capacity to bind specific IgE as compared to wild-type Mal d 1 in in vitro assays in the majority of the sera tested. In ELISA, 10 out of 14 serum samples displayed an 88-30% decrease in IgE binding to Mal d 1 mutant compared to wild-type Mal d 1. Skin prick tests in apple-allergic patients (n = 2) confirmed the markedly decreased ability of the Mal d 1 mutant to induce allergic reactions in vivo. However, the relevant T cell epitopes were present in the mutated molecule according to peripheral blood mononuclear cell proliferation assays. Conclusions: Our findings suggest that it is possible to modulate the IgE-binding properties of allergens by single amino acid substitutions at crucial positions which might be useful for future immunotherapy of birch-pollen-associated food allergies which are not ameliorated by birch pollen immunotherapy. Copyright (C) 2006 S. Karger AG, Basel
    corecore