334 research outputs found

    Functionalisation of terpenoids at C-4 via organopalladium dimers: cyclopropane formation during oxidation of homoallylic sigma-organopalladium intermediates with lead tetraacetate

    Get PDF
    The synthesis of new potential adjuvant saponin aglycons was investigated by selective palladium mediated C-H functionalisation of appropriately functionalised derivatives of lanosterol, cholesterol, and friedelin. The desired equatorial aldehyde functionality was successfully introduced into the lanosterol skeleton as expected. Cyclopalladation of a cholesterol derivative proceeded as expected, but during oxidation of the organopalladium intermediate, participation of the adjacent alkene functionality led to stereoselective formation of a cyclopropane and introduction of an acetate group into the steroid backbone at C-6. Further investigation of this unusual cyclopropane formation on a model decalin system confirmed the result, but C-H activation on a related open chain system was prevented by complexation of the alkene functionality to the palladium. (c) 2007 Elsevier Ltd. All rights reserved

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    Get PDF
    Background - Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology - Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings - The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control program

    Interactive Effects of Large- and Small-Scale Sources of Feral Honey-Bees for Sunflower in the Argentine Pampas

    Get PDF
    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated “sierras”, and narrow (3–7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0–10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services

    Optimal Timing of Insecticide Fogging to Minimize Dengue Cases: Modeling Dengue Transmission among Various Seasonalities and Transmission Intensities

    Get PDF
    Dengue virus infection is a serious infectious disease transmitted by Aedes mosquitoes in the tropics and sub-tropics. Disease control often involves the use of insecticide fogging against mosquito vectors. However, the effectiveness of this method for reducing dengue cases, in addition to appropriate application procedures, is still debated. The previous mathematical simulation study reported that insecticide fogging reduces dengue cases most effectively when applied soon after the epidemic peak; however, the model did not take into account seasonality and population immunity, which strongly affect the epidemic pattern of dengue infection. Considering these important factors, we used a mathematical simulation model to explore the most effective time for insecticide fogging and to evaluate its impact on reducing dengue cases. Simulations were conducted with various lengths of the wet season and population immunity levels. We found that insecticide fogging substantially reduces dengue cases if conducted at an appropriate time. In contrast to the previously suggested application time during the peak of disease prevalence, the optimal timing is relatively early: between the beginning of the dengue season and the prevalence peak

    2020 APHRS/HRS Expert Consensus Statement on the Investigation of Decedents with Sudden Unexplained Death and Patients with Sudden Cardiac Arrest, and of Their Families.

    Get PDF
    This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families

    Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against <it>Anopheles culicifacies </it>and <it>Anopheles stephensi </it>for its possible use in vector control.</p> <p>Methods</p> <p>Efficacy of chlorfenapyr against <it>An. culicifacies </it>and <it>An. stephensi </it>was assessed using adult bioassay tests. In the laboratory, determination of diagnostic dose, assessment of residual activity on different substrates, cross-resistance pattern with different insecticides and potentiation studies using piperonyl butoxide were undertaken by following standard procedures. Potential cross-resistance patterns were assessed on field populations of <it>An. culicifacies</it>.</p> <p>Results</p> <p>A dose of 5.0% chlorfenapyr was determined as the diagnostic concentration for assessing susceptibility applying the WHO tube test method in anopheline mosquitoes with 2 h exposure and 48 h holding period. The DDT-resistant/malathion-deltamethrin-susceptible strain of <it>An. culicifacies </it>species C showed higher LD50 and LD99 (0.67 and 2.39% respectively) values than the DDT-malathion-deltamethrin susceptible <it>An. culicifacies </it>species A (0.41 and 2.0% respectively) and <it>An. stephensi </it>strains (0.43 and 2.13% respectively) and there was no statistically significant difference in mortalities among the three mosquito species tested (p > 0.05). Residual activity of chlorfenapyr a.i. of 400 mg/m<sup>2 </sup>on five fabricated substrates, namely wood, mud, mud+lime, cement and cement + distemper was found to be effective up to 24 weeks against <it>An. culicifacies </it>and up to 34 weeks against <it>An. stephensi</it>. No cross-resistance to DDT, malathion, bendiocarb and deltamethrin was observed with chlorfenapyr in laboratory-reared strains of <it>An. stephensi </it>and field-caught <it>An. culicifacies. </it>Potentiation studies demonstrated the antagonistic effect of PBO.</p> <p>Conclusion</p> <p>Laboratory studies with susceptible and resistant strains of <it>An. culicifacies </it>and <it>An. stephensi</it>, coupled with limited field studies with multiple insecticide-resistant <it>An. culicifacies </it>have shown that chlorfenapyr can be a suitable insecticide for malaria vector control, in multiple-insecticide-resistant mosquitoes especially in areas with pyrethroid resistant mosquitoes.</p

    Peroral Amphotericin B Polymer Nanoparticles Lead to Comparable or Superior In Vivo Antifungal Activity to That of Intravenous Ambisome® or Fungizone™

    Get PDF
    Background: Despite advances in the treatment, the morbidity and mortality rate associated with invasive aspergillosis remains unacceptably high (70–90%) in immunocompromised patients. Amphotericin B (AMB), a polyene antibiotic with broad spectrum antifungal activity appears to be a choice of treatment but is available only as an intravenous formulation; development of an oral formulation would be beneficial as well as economical. Methodology: Poly(lactide-co-glycolode) (PLGA) nanoparticles encapsulating AMB (AMB-NPs) were developed for oral administration. The AMB-NPs were 113±20 nm in size with ~70% entrapment efficiency at 30% AMB w/w of polymer. The in vivo therapeutic efficacy of oral AMB-NPs was evaluated in neutropenic murine models of disseminated and invasive pulmonary aspergillosis. AMB-NPs exhibited comparable or superior efficacy to that of Ambisome® or Fungizone™ administered parenterally indicating potential of NPs as carrier for oral delivery. Conclusions: The present investigation describes an efficient way of producing AMB-NPs with higher AMB pay-load and entrapment efficiency employing DMSO as solvent and ethanol as non-solvent. The developed oral formulation was highly efficacious in murine models of disseminated aspergillosis as well as an invasive pulmonary aspergillosis, which is refractory to treatment with IP Fungizone™and responds only modestly to AmBisome®

    An Emerging Infectious Disease Triggering Large-Scale Hyperpredation

    Get PDF
    Hyperpredation refers to an enhanced predation pressure on a secondary prey due to either an increase in the abundance of a predator population or a sudden drop in the abundance of the main prey. This scarcely documented mechanism has been previously studied in scenarios in which the introduction of a feral prey caused overexploitation of native prey. Here we provide evidence of a previously unreported link between Emergent Infectious Diseases (EIDs) and hyperpredation on a predator-prey community. We show how a viral outbreak caused the population collapse of a host prey at a large spatial scale, which subsequently promoted higher-than-normal predation intensity on a second prey from shared predators. Thus, the disease left a population dynamic fingerprint both in the primary host prey, through direct mortality from the disease, and indirectly in the secondary prey, through hyperpredation. This resulted in synchronized prey population dynamics at a large spatio-temporal scale. We therefore provide evidence for a novel mechanism by which EIDs can disrupt a predator-prey interaction from the individual behavior to the population dynamics. This mechanism can pose a further threat to biodiversity through the human-aided disruption of ecological interactions at large spatial and temporal scales.MM and JASZ were partially supported by a project of the Spanish Ministerio de EducaciĂłn y Ciencia (reference CGL-2006-10689/BOS)
    • …
    corecore