48 research outputs found

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities

    Get PDF
    This work conducted by ENIGMA- Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.Conceived and designed the experiments: ACS JJM MP TJP SDB AVP DAE. Performed the experiments: ACS JJM ZKY. Analyzed the data: ACS JJM TY JDVN JZ DAE. Contributed reagents/materials/analysis tools: DAE TCH APA. Wrote the paper: ACS JJM DAE.Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher Cr(VI) may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.Yeshttp://www.plosone.org/static/editorial#pee

    CAP: conformation angles package—displaying the conformation angles of side chains in proteins

    No full text
    A graphics package has been developed to display all side chain conformation angles of the user selected residue in a given protein structure. The proposed package is incorporated with all the protein structures (solved using X-ray diffraction and NMR spectroscopy) available in the Protein Data Bank. The package displays the multiple conformations adopted by a single amino acid residue whose structure is solved and refined at very high resolution. In addition, it shows the percentage distribution of the side chain conformation angles in different rotameric states

    Ramachandran Plot on The Web (2.0)

    No full text
    The Ramachandran plot displays the main chain conformation angles (\Phi and \Psi) of the polypeptide chain of a protein molecule. The paper reports the updated version of the Ramachandran plot web server and has several improved options for displaying the conformation angles in various regions. In addition, options are provided to display the conformation angles in various secondary structural elements and regions within the user specified \Phi and \Psi values in the plot

    Ramachandran plot on the web

    No full text
    A graphics package has been developed to display the main chain torsion angles phi, psi (phi, Psi); (Ramachandran angles) in a protein of known structure. In addition, the package calculates the Ramachandran angles at the central residue in the stretch of three amino acids having specified the flanking residue types. The package displays the Ramachandran angles along with a detailed analysis output. This software is incorporated with all the protein structures available in the Protein Databank

    Side-chain conformation angles of amino acids: effect of temperature factor cut-off

    No full text
    The paper presents the analysis of the side-chain conformation angles of amino acids in 90% non-identical protein structures. The analysis has been carried out using 113,699 residues, which is higher compared to the previous studies. In the present study, one more quality check, namely, temperature factor cut-off, has been introduced in addition to resolution and R-factor cut-offs. Due to this, the present calculation reveals the approximate values for the minimum and the maximum of the three-rotameric states of χ1\chi_1. In addition, the conformation angles χ2\chi_2 and χ3\chi_3 have been addressed with the improved data set. The results reported here could be of use in protein modeling

    A FAST Pattern Matching Algorithm

    No full text
    The advent of digital computers has made the routine use of pattern-matching possible in various applications.This has also stimulated the development of many algorithms. In this paper, we propose a new algorithm that offers improved performance compared to those reported in the literature so far. The new algorithm has been evolved after analyzing the well-known algorithms such as Boyer-Moore, Quick-search, Raita, and Horspool. The overall performance of the proposed algorithm has been improved using the shift provided by the Quick-search bad-character and by defining a fixed order of comparison. These result in the reduction of the character comparison effort at each attempt. The best- and the worst- case time complexities are also presented in this paper. Most importantly, the proposed method has been compared with the other widely used algorithms. It is interesting to note that the new algorithm works consistently better for any alphabet size

    Conformational Angles Database (CADB-3.0)

    No full text
    Transitions in amino-acid conformation angles tend to accompany various structural modifications in protein structures. Thus, to benefit the modeling of protein structures, the Conformation Angles DataBase (CADB-3.0) has been updated to visualize the conformational angles in varied regions (fully, generously, additionally and disallowed regions). In addition, options are provided to display the angles in the secondary structural elements (\alpha-helix, \beta-sheet and 310-helix) of the Ramachandran plot. The database is being updated periodically and can be accessed over the World Wide Web at the following URL: http://cluster.physics.iisc.ernet.in/cadb/

    SEM (Symmetry Equivalent Molecules): a web-based GUI to generate and visualize the macromolecules

    No full text
    SEM, Symmetry Equivalent Molecules, is a web-based graphical user interface to generate and visualize the symmetry equivalent molecules (proteins and nucleic acids). In addition, the program allows the users to save the three-dimensional atomic coordinates of the symmetry equivalent molecules in the local machine. The widely recognized graphics program RasMol has been deployed to visualize the reference (input atomic coordinates) and the symmetry equivalent molecules. This program is written using CGI/Perl scripts and has been interfaced with all the three-dimensional structures (solved using X-ray crystallography) available in the Protein Data Bank. The program, SEM, can be accessed over the World Wide Web interface at http://dicsoft2.physics.iisc.ernet.in/sem/ or http://144.16.71.11/sem/
    corecore