67 research outputs found

    Solid stress facilitates spheroid formation: potential involvement of hyaluronan

    Get PDF
    When neoplastic cells grow in confined spaces in vivo, they exert a finite force on the surrounding tissue resulting in the generation of solid stress. By growing multicellular spheroids in agarose gels of defined mechanical properties, we have recently shown that solid stress inhibits the growth of spheroids and that this growth-inhibiting stress ranges from 45 to 120 mmHg. Here we show that solid stress facilitates the formation of spheroids in the highly metastatic Dunning R3327 rat prostate carcinoma AT3.1 cells, which predominantly do not grow as spheroids in free suspension. The maximum size and the growth rate of the resulting spheroids decreased with increasing stress. Relieving solid stress by enzymatic digestion of gels resulted in gradual loss of spheroidal morphology in 8 days. In contrast, the low metastatic variant AT2.1 cells, which grow as spheroids in free suspension as well as in the gels, maintained their spheroidal morphology even after stress removal. Histological examination revealed that most cells in AT2.1 spheroids are in close apposition whereas a regular matrix separates the cells in the AT3.1 gel spheroids. Staining with the hyaluronan binding protein revealed that the matrix between AT3.1 cells in agarose contained hyaluronan, while AT3.1 cells had negligible or no hyaluronan when grown in free suspension. Hyaluronan was found to be present in both free suspensions and agarose gel spheroids of AT2.1. We suggest that cell–cell adhesion may be adequate for spheroid formation, whereas solid stress may be required to form spheroids when cell–matrix adhesion is predominant. These findings have significant implications for tumour growth, invasion and metastasis

    Sequence Specific Motor Performance Gains after Memory Consolidation in Children and Adolescents

    Get PDF
    Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training

    Augmented acquisition of cocaine self-administration and altered brain glucose metabolism in adult female but not male rats exposed to a cannabinoid agonist during adolescence

    Get PDF
    Marijuana consumption during adolescence has been proposed to be a stepping stone for adult cocaine addiction. However, experimental evidence for this hypothesis is missing. In this work we chronically injected male and female Wistar rats with either the cannabinoid agonist CP 55,940 (CP; 0.4 mg/kg) or its corresponding vehicle. Adult acquisition (seven 30 min daily sessions) and maintenance (fourteen 2 h daily sessions) of cocaine self administration (1 mg/kg), food reinforced operant learning under conditions of normal (ad libitum access to food), and high motivation (food restriction schedule) were measured. Additionally, brain metabolic activity was analyzed by means of [18F] fluorodeoxyglucose positron emission tomography. During the acquisition phase, female CP treated rats showed a higher rate of cocaine self administration as compared to vehicle treated females and males; no differences were found between both male groups. This effect disappeared in the maintenance phase. Moreover, no differences among groups were evident in the food reinforced operant task, pointing to the cocaine specific nature of the effect seen in self administration rather than a general change in reward processing. Basal brain metabolic activity also changed in CP treated females when compared to their vehicle treated counterparts with no differences being found in the males; more specifically we observed a hyper activation of the frontal cortex and a hypo activation of the amygdalo entorhinal cortex. Our results suggest that a chronic exposure to cannabinoids during adolescence alters the susceptibility to acquire cocaine self administration, in a sex specific fashion. This increased susceptibility could be related to thechanges in brain metabolic activity induced by cannabinoids during adolescenceThis work was supported by Grants FIS G03/05 (Red de Trastornos Adictivos), BSO2001-1099, FIS 01-05-01, Plan Nacional sobre Drogas (PNSD) 2001–2003, PNSD 2004–2007, GR-SAL/0260/2004 to EA and Grants INT/2012/ 2002, CB06/01/0079, and CENIT (2006–2009) to MDPublicad

    Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Get PDF
    BACKGROUND: Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. METHODOLOGY/PRINCIPAL FINDINGS: Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. CONCLUSIONS/SIGNIFICANCE: These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation

    Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area

    Get PDF
    The primary motor cortex (M1) is strongly influenced by several frontal regions. Dual-site transcranial magnetic stimulation (dsTMS) has highlighted the timing of early (<40 ms) prefrontal/premotor influences over M1. Here we used dsTMS to investigate, for the first time, longer-latency causal interactions of the posterior inferior frontal gyrus (pIFG) and pre-supplementary motor area (pre-SMA) with M1 at rest. A suprathreshold test stimulus (TS) was applied over M1 producing a motor-evoked potential (MEP) in the relaxed hand. Either a subthreshold or a suprathreshold conditioning stimulus (CS) was administered over ipsilateral pIFG/pre-SMA sites before the TS at different CS-TS inter-stimulus intervals (ISIs: 40-150 ms). Independently of intensity, CS over pIFG and pre-SMA (but not over a control site) inhibited MEPs at an ISI of 40 ms. The CS over pIFG produced a second peak of inhibition at an ISI of 150 ms. Additionally, facilitatory modulations were found at an ISI of 60 ms, with supra-but not subthreshold CS intensities. These findings suggest differential modulatory roles of pIFG and pre-SMA in M1 excitability. In particular, the pIFG-but not the pre-SMA-exerts intensity-dependent modulatory influences over M1 within the explored time window of 40-150 ms, evidencing fine-tuned control of M1 output

    The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages

    Get PDF

    Is implicit motor learning preserved after stroke? A systematic review with meta-analysis

    Get PDF
    © 2016 Kal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients' automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved poststroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts
    corecore