133 research outputs found

    Monkeypox Disease Transmission in an Experimental Setting: Prairie Dog Animal Model

    Get PDF
    Monkeypox virus (MPXV) is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox). MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus) and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively). Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission

    Capsid and Infectivity in Virus Detection

    Get PDF
    The spectacular achievements and elegance of viral RNA analyses have somewhat obscured the importance of the capsid in transmission of viruses via food and water. The capsid’s essential roles are protection of the RNA when the virion is outside the host cell and initiation of infection when the virion contacts a receptor on an appropriate host cell. Capsids of environmentally transmitted viruses are phenomenally durable. Fortuitous properties of the capsid include antigenicity, isoelectric point(s), sometimes hemagglutination, and perhaps others. These can potentially be used to characterize capsid changes that cause or accompany loss of viral infectivity and may be valuable in distinguishing native from inactivated virus when molecular detection methods are used

    Identification of Novel Linear Megaplasmids Carrying a ß-Lactamase Gene in Neurotoxigenic Clostridium butyricum Type E Strains

    Get PDF
    Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P) and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human pathogen

    Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling

    Get PDF
    Photodynamic therapy (PDT) of solid tumours causes tissue damage that elicits local and systemic inflammation with major involvement of interleukin-6 (IL-6). We have previously reported that PDT-treated cells lose responsiveness to IL-6 cytokines. Therefore, it is unclear whether PDT surviving tumour cells are subject to regulation by IL-6 and whether this regulation could contribute to tumour control by PDT. We demonstrate in epithelial tumour cells that while the action of IL-6 cytokines through their membrane receptors is attenuated, regulation by IL-6 via trans-signalling is established. Soluble interleukin-6 receptor-α (IL-6Rα) (sIL-6Rα) and IL-6 were released by leucocytes in the presence of conditioned medium from PDT-treated tumour cells. Cells that had lost their membrane receptor IL-6Rα due to PDT responded to treatment with the IL-6R–IL-6 complex (Hyper-IL-6) with activation of signal transducers and activator of transcription (STAT3) and ERK. Photodynamic therapy-treated cells, which were maintained during post-PDT recovery in presence of IL-6 or Hyper-IL-6, showed an enhanced suppression of proliferation. Cytokine-dependent inhibition of proliferation correlated with a decrease in cyclin E, CDK2 and Cdc25A, and enhancement of p27kip1 and hypophosphorylated Rb. The IL-6 trans-signalling-mediated attenuation of cell proliferation was also effective in vivo detectable by an improved Colon26 tumour cure by PDT combined with Hyper-IL-6 treatment. Prevention of IL-6 trans-signalling using soluble gp130 reduced curability. The data suggest that the post-PDT tumour milieu contains the necessary components to establish effective IL-6 trans-signalling, thus providing a means for more effective tumour control

    Experimental Inoculation of Juvenile Rhesus Macaques with Primate Enteric Caliciviruses

    Get PDF
    Tissue culture-adapted Tulane virus (TV), a GI.1 rhesus enteric calicivirus (ReCV), and a mixture of GII.2 and GII.4 human norovirus (NoV)-containing stool sample were used to intrastomacheally inoculate juvenile rhesus macaques (Macaca mulatta) in order to evaluate infection caused by these viruses. METHODOLOGY & FINDINGS: Two of the three TV-inoculated macaques developed diarrhea, fever, virus-shedding in stools, inflammation of duodenum and 16-fold increase of TV-neutralizing (VN) serum antibodies but no vomiting or viremia. No VN-antibody responses could be detected against a GI.2 ReCV strain FT285, suggesting that TV and FT285 represent different ReCV serotypes. Both NoV-inoculated macaques remained asymptomatic but with demonstrable virus shedding in one animal. Examination of duodenum biopsies of the TV-inoculated macaques showed lymphocytic infiltration of the lamina propria and villous blunting. TV antigen-positive (TV+) cells were detected in the lamina propria. In most of the TV+ cells TV co-localized perinuclearly with calnexin--an endoplasmic reticulum protein. A few CD20+TV+ double-positive B cells were also identified in duodenum. To corroborate the authenticity of CD20+TV+ B cells, in vitro cultures of peripheral blood mononuclear cells (PBMCs) from healthy macaques were inoculated with TV. Multicolor flow cytometry confirmed the presence of TV antigen-containing B cells of predominantly CD20+HLA-DR+ phenotype. A 2-log increase of viral RNA by 6 days post inoculation (p<0.05) suggested active TV replication in cultured lymphocytes.Taken together, our results show that ReCVs represent an alternative cell culture and animal model to study enteric calicivirus replication, pathogenesis and immunity

    The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review

    Get PDF
    BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution

    Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia

    Get PDF
    © 2016, The Author(s). Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer’s disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB). To further understand if these increases are specific to AD, the expression profiles of hBCATc and hBCATm were examined in other forms of dementia including DLB and VaD. Similar to AD, levels of hBCATm were significantly increased in the frontal and temporal cortex of VaD cases and in frontal cortex of DLB cases compared to controls, however there were no observed differences in hBCATc between groups in these areas. Moreover, multiple forms of hBCATm were observed that were particular to the disease state relative to matched controls. Real-time PCR revealed similar expression of hBCATm mRNA in frontal and temporal cortex for all cohort comparisons, whereas hBCATc mRNA expression was significantly increased in VaD cases compared to controls. Collectively our results suggest that hBCATm protein expression is significantly increased in the brains of DLB and VaD cases, similar to those reported in AD brain. These findings indicate a more global response to altered glutamate metabolism and suggest common metabolic responses that might reflect shared neurodegenerative mechanisms across several forms of dementia

    The contribution of dynamic stromal remodeling during mammary development to breast carcinogenesis

    Get PDF
    Breast cancer is a heterogeneous disease whose prognosis varies depending upon the developmental stage of the breast tissue at diagnosis. Notably, breast cancers associated with pregnancy exhibit increased rates of metastasis and poorer long-term survival compared to those diagnosed after menopause. However, postmenopausal breast cancers associated with obesity exhibit a more aggressive behavior and confer decreased overall patient survival compared to those diagnosed in non-obese individuals. Since the mammary gland is a dynamic tissue that undergoes significant changes throughout a woman's lifetime, especially during pregnancy and following menopause, we present evidence to support the notion that changes occurring throughout development within the mammary stromal compartment may account for some of the biological differences in breast cancer subtypes and behaviors
    corecore