193 research outputs found

    Effect of household-based drinking water chlorination on diarrhoea among children under five in Orissa, India: a double-blind randomised placebo-controlled trial.

    Get PDF
    BACKGROUND: Boiling, disinfecting, and filtering water within the home can improve the microbiological quality of drinking water among the hundreds of millions of people who rely on unsafe water supplies. However, the impact of these interventions on diarrhoea is unclear. Most studies using open trial designs have reported a protective effect on diarrhoea while blinded studies of household water treatment in low-income settings have found no such effect. However, none of those studies were powered to detect an impact among children under five and participants were followed-up over short periods of time. The aim of this study was to measure the effect of in-home water disinfection on diarrhoea among children under five. METHODS AND FINDINGS: We conducted a double-blind randomised controlled trial between November 2010 and December 2011. The study included 2,163 households and 2,986 children under five in rural and urban communities of Orissa, India. The intervention consisted of an intensive promotion campaign and free distribution of sodium dichloroisocyanurate (NaDCC) tablets during bi-monthly households visits. An independent evaluation team visited households monthly for one year to collect health data and water samples. The primary outcome was the longitudinal prevalence of diarrhoea (3-day point prevalence) among children aged under five. Weight-for-age was also measured at each visit to assess its potential as a proxy marker for diarrhoea. Adherence was monitored each month through caregiver's reports and the presence of residual free chlorine in the child's drinking water at the time of visit. On 20% of the total household visits, children's drinking water was assayed for thermotolerant coliforms (TTC), an indicator of faecal contamination. The primary analysis was on an intention-to-treat basis. Binomial regression with a log link function and robust standard errors was used to compare prevalence of diarrhoea between arms. We used generalised estimating equations to account for clustering at the household level. The impact of the intervention on weight-for-age z scores (WAZ) was analysed using random effect linear regression. Over the follow-up period, 84,391 child-days of observations were recorded, representing 88% of total possible child-days of observation. The longitudinal prevalence of diarrhoea among intervention children was 1.69% compared to 1.74% among controls. After adjusting for clustering within household, the prevalence ratio of the intervention to control was 0.95 (95% CI 0.79-1.13). The mean WAZ was similar among children of the intervention and control groups (-1.586 versus -1.589, respectively). Among intervention households, 51% reported their child's drinking water to be treated with the tablets at the time of visit, though only 32% of water samples tested positive for residual chlorine. Faecal contamination of drinking water was lower among intervention households than controls (geometric mean TTC count of 50 [95% CI 44-57] per 100 ml compared to 122 [95% CI 107-139] per 100 ml among controls [p<0.001] [nβ€Š=β€Š4,546]). CONCLUSIONS: Our study was designed to overcome the shortcomings of previous double-blinded trials of household water treatment in low-income settings. The sample size was larger, the follow-up period longer, both urban and rural populations were included, and adherence and water quality were monitored extensively over time. These results provide no evidence that the intervention was protective against diarrhoea. Low compliance and modest reduction in water contamination may have contributed to the lack of effect. However, our findings are consistent with other blinded studies of similar interventions and raise additional questions about the actual health impact of household water treatment under these conditions. TRIAL REGISTRATION: ClinicalTrials.govNCT01202383 Please see later in the article for the Editors' Summary

    "Dreaming in colour’: disabled higher education students’ perspectives on improving design practices that would enable them to benefit from their use of technologies"

    Get PDF
    The focus of this paper is the design of technology products and services for disabled students in higher education. It analyses the perspectives of disabled students studying in the US, the UK, Germany, Israel and Canada, regarding their experiences of using technologies to support their learning. The students shared how the functionality of the technologies supported them to study and enabled them to achieve their academic potential. Despite these positive outcomes, the students also reported difficulties associated with: i) the design of the technologies, ii) a lack of technology know-how and iii) a lack of social capital. When identifying potential solutions to these difficulties the disabled students imagined both preferable and possible futures where faculty, higher education institutions, researchers and technology companies are challenged to push the boundaries of their current design practices

    Fungal chitinases: diversity, mechanistic properties and biotechnological potential

    Get PDF
    Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review

    FrzS Regulates Social Motility in Myxococcus xanthus by Controlling Exopolysaccharide Production

    Get PDF
    Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core

    Epistatic Roles of E2 Glycoprotein Mutations in Adaption of Chikungunya Virus to Aedes Albopictus and Ae. Aegypti Mosquitoes

    Get PDF
    Between 2005 and 2007 Chikungunya virus (CHIKV) caused its largest outbreak/epidemic in documented history. An unusual feature of this epidemic is the involvement of Ae. albopictus as a principal vector. Previously we have demonstrated that a single mutation E1-A226V significantly changed the ability of the virus to infect and be transmitted by this vector when expressed in the background of well characterized CHIKV strains LR2006 OPY1 and 37997. However, in the current study we demonstrate that introduction of the E1-A226V mutation into the background of an infectious clone derived from the Ag41855 strain (isolated in Uganda in 1982) does not significantly increase infectivity for Ae. albopictus. In order to elucidate the genetic determinants that affect CHIKV sensitivity to the E1-A226V mutation in Ae. albopictus, the genomes of the LR2006 OPY1 and Ag41855 strains were used for construction of chimeric viruses and viruses with a specific combination of point mutations at selected positions. Based upon the midgut infection rates of the derived viruses in Ae. albopictus and Ae. aegypti mosquitoes, a critical role of the mutations at positions E2-60 and E2-211 on vector infection was revealed. The E2-G60D mutation was an important determinant of CHIKV infectivity for both Ae. albopictus and Ae. aegypti, but only moderately modulated the effect of the E1-A226V mutation in Ae. albopictus. However, the effect of the E2-I211T mutation with respect to mosquito infections was much more specific, strongly modifying the effect of the E1-A226V mutation in Ae. albopictus. In contrast, CHIKV infectivity for Ae. aegypti was not influenced by the E2-1211T mutation. The occurrence of the E2-60G and E2-211I residues among CHIKV isolates was analyzed, revealing a high prevalence of E2-211I among strains belonging to the Eastern/Central/South African (ECSA) clade. This suggests that the E2-211I might be important for adaptation of CHIKV to some particular conditions prevalent in areas occupied by ECSA stains. These newly described determinants of CHIKV mosquito infectivity for Ae. albopictus and Ae. aegypti are of particular importance for studies aimed at the investigation of the detailed mechanisms of CHIKV adaptations to its vector species

    Genetic Basis of Virulence Attenuation Revealed by Comparative Genomic Analysis of Mycobacterium tuberculosis Strain H37Ra versus H37Rv

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading infectious disease despite the availability of chemotherapy and BCG vaccine. The commonly used avirulent M. tuberculosis strain H37Ra was derived from virulent strain H37 in 1935 but the basis of virulence attenuation has remained obscure despite numerous studies. We determined the complete genomic sequence of H37Ra ATCC25177 and compared that with its virulent counterpart H37Rv and a clinical isolate CDC1551. The H37Ra genome is highly similar to that of H37Rv with respect to gene content and order but is 8,445 bp larger as a result of 53 insertions and 21 deletions in H37Ra relative to H37Rv. Variations in repetitive sequences such as IS6110 and PE/PPE/PE-PGRS family genes are responsible for most of the gross genetic changes. A total of 198 single nucleotide variations (SNVs) that are different between H37Ra and H37Rv were identified, yet 119 of them are identical between H37Ra and CDC1551 and 3 are due to H37Rv strain variation, leaving only 76 H37Ra-specific SNVs that affect only 32 genes. The biological impact of missense mutations in protein coding sequences was analyzed in silico while nucleotide variations in potential promoter regions of several important genes were verified by quantitative RT-PCR. Mutations affecting transcription factors and/or global metabolic regulations related to in vitro survival under aging stress, and mutations affecting cell envelope, primary metabolism, in vivo growth as well as variations in the PE/PPE/PE-PGRS family genes, may underlie the basis of virulence attenuation. These findings have implications not only for improved understanding of pathogenesis of M. tuberculosis but also for development of new vaccines and new therapeutic agents

    Knowledge-Driven Multi-Locus Analysis Reveals Gene-Gene Interactions Influencing HDL Cholesterol Level in Two Independent EMR-Linked Biobanks

    Get PDF
    Genome-wide association studies (GWAS) are routinely being used to examine the genetic contribution to complex human traits, such as high-density lipoprotein cholesterol (HDL-C). Although HDL-C levels are highly heritable (h2∼0.7), the genetic determinants identified through GWAS contribute to a small fraction of the variance in this trait. Reasons for this discrepancy may include rare variants, structural variants, gene-environment (GxE) interactions, and gene-gene (GxG) interactions. Clinical practice-based biobanks now allow investigators to address these challenges by conducting GWAS in the context of comprehensive electronic medical records (EMRs). Here we apply an EMR-based phenotyping approach, within the context of routine care, to replicate several known associations between HDL-C and previously characterized genetic variants: CETP (rs3764261, pβ€Š=β€Š1.22e-25), LIPC (rs11855284, pβ€Š=β€Š3.92e-14), LPL (rs12678919, pβ€Š=β€Š1.99e-7), and the APOA1/C3/A4/A5 locus (rs964184, pβ€Š=β€Š1.06e-5), all adjusted for age, gender, body mass index (BMI), and smoking status. By using a novel approach which censors data based on relevant co-morbidities and lipid modifying medications to construct a more rigorous HDL-C phenotype, we identified an association between HDL-C and TRIB1, a gene which previously resisted identification in studies with larger sample sizes. Through the application of additional analytical strategies incorporating biological knowledge, we further identified 11 significant GxG interaction models in our discovery cohort, 8 of which show evidence of replication in a second biobank cohort. The strongest predictive model included a pairwise interaction between LPL (which modulates the incorporation of triglyceride into HDL) and ABCA1 (which modulates the incorporation of free cholesterol into HDL). These results demonstrate that gene-gene interactions modulate complex human traits, including HDL cholesterol

    Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus

    Get PDF
    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4Γ—106 in BHK-21 (vertebrate) cells and ∼1.05Γ—105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely

    Unravelling the evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor gene families in Bilaterians: insights from Anopheles Mosquitoes

    Get PDF
    Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anophelesmosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa(2+)-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.Foundation for Science and Technology, Portugal (FCT) [PTDC/BIA-BCM/114395/2009]; European Regional Development Fund (ERDF) COMPETE - Operational Competitiveness Programme; Portuguese funds through FCT Foundation for Science and Technology [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013, PEst-OE/SAU/LA0018/2013]; FCT [SFRH/BPD/89811/2012, SFRH/BPD/80447/2011, SFRH/BPD/66742/2009]; auxiliary research contract FCT Pluriannual funds [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio
    • …
    corecore