328 research outputs found

    Periodico La Bandera Mexicana

    Get PDF
    Publicación en homenaje al primer periódico en español en California/ Named after the first newspaper in California\u27s history.https://digitalcommons.humboldt.edu/newspapers/1000/thumbnail.jp

    Periodico La Bandera Mexicana

    Get PDF
    Publicación en homenaje al primer periódico en español en California/ Named after the first newspaper in California\u27s history.https://digitalcommons.humboldt.edu/newspapers/1001/thumbnail.jp

    Enhancement of nematic order and global phase diagram of a lattice model for coupled nematic systems

    Full text link
    We use an infinite-range Maier-Saupe model, with two sets of local quadrupolar variables and restricted orientations, to investigate the global phase diagram of a coupled system of two nematic subsystems. The free energy and the equations of state are exactly calculated by standard techniques of statistical mechanics. The nematic-isotropic transition temperature of system A increases with both the interaction energy among mesogens of system B, and the two-subsystem coupling JJ. This enhancement of the nematic phase is manifested in a global phase diagram in terms of the interaction parameters and the temperature TT. We make some comments on the connections of these results with experimental findings for a system of diluted ferroelectric nanoparticles embedded in a nematic liquid-crystalline environment.Comment: 11 pages, 3 figures, to appear in Volume 42 of the Brazilian Journal of Physic

    A putative biomarker signature for clinically effective AKT inhibition: correlation of in vitro, in vivo and clinical data identifies the importance of modulation of the mTORC1 pathway

    No full text
    Our identification of dysregulation of the AKT pathway in ovarian cancer as a platinum resistance specific event led to a comprehensive analysis of in vitro, in vivo and clinical behaviour of the AKT inhibitor GSK2141795. Proteomic biomarker signatures correlating with effects of GSK2141795 were developed using in vitro and in vivo models, well characterised for related molecular, phenotypic and imaging endpoints. Signatures were validated in temporally paired biopsies from patients treated with GSK2141795 in a clinical study. GSK2141795 caused growth-arrest as single agent in vitro, enhanced cisplatin-induced apoptosis in vitro and reduced tumour volume in combination with platinum in vivo. GSK2141795 treatment in vitro and in vivo resulted in ~50-90% decrease in phospho-PRAS40 and 20-80% decrease in fluoro-deoxyglucose (FDG) uptake. Proteomic analysis of GSK2141795 in vitro and in vivo identified a signature of pathway inhibition including changes in AKT and p38 phosphorylation and total Bim, IGF1R, AR and YB1 levels. In patient biopsies, prior to treatment with GSK2141795 in a phase 1 clinical trial, this signature was predictive of post-treatment changes in the response marker CA125. Development of this signature represents an opportunity to demonstrate the clinical importance of AKT inhibition for re-sensitisation of platinum resistant ovarian cancer to platinum

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Successful Determination of Larval Dispersal Distances and Subsequent Settlement for Long-Lived Pelagic Larvae

    Get PDF
    Despite its importance, we still have a poor understanding of the level of connectivity between marine populations in most geographical locations. Taking advantage of the natural features of the southeast coast of New Zealand's North Island, we deployed a series of settlement stations and conducted plankton tows to capture recent settlers and planktonic larvae of the common intertidal gastropod Austrolittorina cincta (6–8 week larval period). Satellite image analysis and ground truthing surveys revealed the absence of suitable intertidal rocky shore habitat for A. cincta over a 100 km stretch of coastline between Kapiti Island to the south and Wanganui to the north. Fifteen settlement stations (3 replicates×5 sites), which were used to mimic intertidal habitat suitable for A. cincta, were deployed for two months around and north of Kapiti Island (at 0.5, 1, 5, 15, 50 km). In addition, we also conducted plankton tows at each settlement station when the stations were first deployed to collect A. cincta larvae in the water column. On collection, all newly settled gastropods and larvae in the plankton samples were individually isolated, and a species-specific microsatellite marker was used to positively identify A. cincta individuals. Most of the positively identified A. cincta settlers and larvae were collected at the first three sampling stations (<5 km). However, low numbers of A. cincta settlers and larvae were also recorded at the two more distant locations (15 and 50 km). Dispersal curves modeled from our data suggested that <1% of gastropod larvae would travel more than 100 km. While our data show that most larvae are retained close to their natal populations (<5 km), a small proportion of larvae are able to travel much larger geographic distances. Our estimates of larval dispersal and subsequent settlement are one of only a few for marine species with a long-lived larva

    Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.

    Get PDF
    We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    Spatial Modulation of Primate Inferotemporal Responses by Eye Position

    Get PDF
    Background: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. Methodology/Principal Findings: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40 % of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. Conclusions/Significance: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventra
    corecore