388 research outputs found

    Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer

    Get PDF
    Wenwu Xiao1, Juntao Luo2, Teesta Jain3, John Riggs3, Harry P Tseng1, Paul T Henderson3, Simon R Cherry4, Douglas Rowland4, Kit S Lam1,31Department of Biochemistry and Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA; 2Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY; 3Department of Internal Medicine, Division of Hematology and Oncology, 4Department of Biomedical Engineering, UC Davis Cancer Center, University of California Davis, Davis, CABackground: A multifunctional telodendrimer-based micelle system was characterized for delivery of imaging and chemotherapy agents to mouse tumor xenografts. Previous optical imaging studies demonstrated qualitatively that these classes of nanoparticles, called nanomicelles, preferentially accumulate at tumor sites in mice. The research reported herein describes the detailed quantitative imaging and biodistribution profiling of nanomicelles loaded with a cargo of paclitaxel.Methods: The telodendrimer was covalently labeled with 125I and the nanomicelles were loaded with 14C-paclitaxel, which allowed measurement of pharmacokinetics and biodistribution in the mice using microSPECT/CT imaging and liquid scintillation counting, respectively.Results: The radio imaging data showed preferential accumulation of nanomicelles at the tumor site along with a slower clearance rate than paclitaxel formulated in Cremophor EL (Taxol®). Liquid scintillation counting confirmed that 14C-labeled paclitaxel sequestered in nanomicelles had increased uptake by tumor tissue and slower pharmacokinetics than Taxol.Conclusion: Overall, the results indicate that nanomicelle-formulated paclitaxel is a potentially superior formulation compared with Taxol in terms of water solubility, pharmacokinetics, and tumor accumulation, and may be clinically useful for both tumor imaging and improved chemotherapy applications.Keywords: telodendrimer, nanomicelle, paclitaxel, microSPECT/CT, imaging guided drug deliver

    Revised Lithostratigraphy of the Sonsela Member (Chinle Formation, Upper Triassic) in the Southern Part of Petrified Forest National Park, Arizona

    Get PDF
    BACKGROUND: Recent revisions to the Sonsela Member of the Chinle Formation in Petrified Forest National Park have presented a three-part lithostratigraphic model based on unconventional correlations of sandstone beds. As a vertebrate faunal transition is recorded within this stratigraphic interval, these correlations, and the purported existence of a depositional hiatus (the Tr-4 unconformity) at about the same level, must be carefully re-examined. METHODOLOGY/PRINCIPAL FINDINGS: Our investigations demonstrate the neglected necessity of walking out contacts and mapping when constructing lithostratigraphic models, and providing UTM coordinates and labeled photographs for all measured sections. We correct correlation errors within the Sonsela Member, demonstrate that there are multiple Flattops One sandstones, all of which are higher than the traditional Sonsela sandstone bed, that the Sonsela sandstone bed and Rainbow Forest Bed are equivalent, that the Rainbow Forest Bed is higher than the sandstones at the base of Blue Mesa and Agate Mesa, that strata formerly assigned to the Jim Camp Wash beds occur at two stratigraphic levels, and that there are multiple persistent silcrete horizons within the Sonsela Member. CONCLUSIONS/SIGNIFICANCE: We present a revised five-part model for the Sonsela Member. The units from lowest to highest are: the Camp Butte beds, Lot's Wife beds, Jasper Forest bed (the Sonsela sandstone)/Rainbow Forest Bed, Jim Camp Wash beds, and Martha's Butte beds (including the Flattops One sandstones). Although there are numerous degradational/aggradational cycles within the Chinle Formation, a single unconformable horizon within or at the base of the Sonsela Member that can be traced across the entire western United States (the "Tr-4 unconformity") probably does not exist. The shift from relatively humid and poorly-drained to arid and well-drained climatic conditions began during deposition of the Sonsela Member (low in the Jim Camp Wash beds), well after the Carnian-Norian transition

    Bone loss and the aromatase inhibitors

    Get PDF
    The increasing use of systemic adjuvant therapies has considerably improved the prognosis from early breast cancer. However, some of these therapies affect bone metabolism, resulting in osteoporosis. Aromatase inhibitors lower circulating oestrogen levels to almost unrecordable levels in postmenopausal women, predisposing them to bone loss with an increase in fracture risk. Ongoing clinical trials are favouring the use of the aromatase inhibitors over tamoxifen and this may advocate greater use of these drugs in the future. Strategies for the identification and management of treatment-induced bone loss are currently being defined

    A three-year longitudinal evaluation of the forearm bone density of users of etonogestrel- and levonorgestrel-releasing contraceptive implants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate bone mineral density (BMD) at baseline and at 18 and 36 months of use of etonogestrel (ENG)-and levonorgestrel (LNG)-releasing contraceptive implants. This is a continuation of a previous study in which BMD was evaluated at baseline and at 18 months of use.</p> <p>Methods</p> <p>A total of 111 women, 19–43 years of age, wererandomly allocated to use one of the two implants. At 36 months of follow-up, only 36 and 39 women were still using the ENG- and LNG-releasing implants, respectively. BMD was evaluated at the distal and at the ultra-distal radius of the non-dominant forearm using dual-energy X-ray absorptiometry.</p> <p>Results</p> <p>There was no difference in the BMD of users of either implant at 18 and at 36 months. BMD was significantly lower at 18 and at 36 months at the distal radius in both groups of users compared to pre-insertion values; however, no difference was found at the ultra-distal radius.</p> <p>Conclusion</p> <p>Women 19–43 years of age using either one of these two contraceptive implants for 36 months had lower BMD values at the distal radius compared to pre-insertion values; however, no difference was found at the ultra-distal radius.</p

    Low frequency of asymptomatic carriage of toxigenic Clostridium difficile in an acute care geriatric hospital: prospective cohort study in Switzerland

    Full text link
    Abstract Background The role of asymptomatic carriers of toxigenic Clostridium difficile (TCD) in nosocomial cross-transmission remains debatable. Moreover, its relevance in the elderly has been sparsely studied. Objectives To assess asymptomatic TCD carriage in an acute care geriatric population. Methods We performed a prospective cohort study at the 296-bed geriatric hospital of the Geneva University Hospitals. We consecutively recruited all patients admitted to two 15-bed acute-care wards. Patients with C. difficile infection (CDI) or diarrhoea at admission were excluded. First bowel movement after admission and every two weeks thereafter were sampled. C. difficile toxin B gene was identified using real-time polymerase chain-reaction (BD MAXTMCdiff). Asymptomatic TCD carriage was defined by the presence of the C. difficile toxin B gene without diarrhoea. Results A total of 102 patients were admitted between March and June 2015. Two patients were excluded. Among the 100 patients included in the study, 63 were hospitalized and 1 had CDI in the previous year, and 36 were exposed to systemic antibiotics within 90 days prior to admission. Overall, 199 stool samples were collected (median 2 per patient, IQR 1-3). Asymptomatic TCD carriage was identified in two patients (2 %). Conclusions We found a low prevalence of asymptomatic TCD carriage in a geriatric population frequently exposed to antibiotics and healthcare. Our findings suggest that asymptomatic TCD carriage might contribute only marginally to nosocomial TCD cross-transmission in our and similar healthcare settings

    Low appendicular muscle mass is correlated with femoral neck bone mineral density loss in postmenopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After menopause, rapid bone mass loss occurs in response to hypoestrogenism. Several studies suggest that muscle mass and bone mineral density (BMD) are positively associated in postmenopausal women. Therefore, it may be assumed that postmenopausal low appendicular muscle mass (aMM) can increase BMD loss in a short period of time.</p> <p>Objective</p> <p>The purpose of this study was to assess relationship of aMM with femoral neck BMD in postmenopausal women.</p> <p>Methods</p> <p>Prospective, controlled clinical Trial including 64 women aged 45-70 years, who had not had their last menstruation for at least one year. Subjects were divided into two groups: low aMM (n = 32), and normal aMM (n-32). Femoral neck BMD and muscle mass were measured by DXA at baseline and after twelve months. Pairwise and independent t tests were used for data analysis.</p> <p>Results</p> <p>Baseline weight, BMI and muscle mass (total and appendicular) significantly differ between groups (p < 0.05). After twelve months, femoral neck BMD was significantly lower in the group with low aMM, whereas no significant difference was observed in the group with normal aMM (p < 0.05).</p> <p>Conclusion</p> <p>In postmenopausal women, low appendicular muscle mass is associated negatively with femoral neck BMD in a short period of time.</p

    Actomyosin-Dependent Cortical Dynamics Contributes to the Prophase Force-Balance in the Early Drosophila Embryo

    Get PDF
    embryo mitotic spindle during prophase depends upon a balance of outward forces generated by cortical dynein and inward forces generated by kinesin-14 and nuclear elasticity. Myosin II is known to contribute to the dynamics of the cell cortex but how this influences the prophase force-balance is unclear. mutants displaying abnormally small actin caps but normal prophase spindle length in late prophase, myosin II inhibition produced very short spindles.These results suggest that two complementary outward forces are exerted on the prophase spindle by the overlying cortex. Specifically, dynein localized on the mechanically firm actin caps and the actomyosin-driven contraction of the deformable soft patches of the actin cortex, cooperate to pull astral microtubules outward. Thus, myosin II controls the size and dynamic properties of the actin-based cortex to influence the spacing of the poles of the underlying spindle during prophase
    corecore