119 research outputs found

    Mutations of the transcription factor PU.1 are not associated with acute lymphoblastic leukaemia

    Get PDF
    The transcription factor PU.1 plays a crucial role during normal haematopoiesis in both myeloid cells and B-lymphocytes. Mice with a disruption in both alleles of the PU.1 locus were found to lack macrophages and B cells and had delayed appearance of neutrophils. In addition, critical decrease of PU.1 expression is sufficient to cause acute myeloid leukaemia (AML) and lymphomas in mice. Recently, we reported that heterozygous mutations in the PU.1 gene are present in some patients with AML. Thus, we hypothesised that PU.1 mutations might also contribute to the development of acute leukaemias of the B-cell lineage. Here, we screened 62 patients with B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis for genomic mutations by direct sequencing of all five exons of the PU.1 gene. We found no genomic alteration of the PU.1 gene suggesting that PU.1 mutations are not likely to be common in B-ALL

    Altering a Histone H3K4 Methylation Pathway in Glomerular Podocytes Promotes a Chronic Disease Phenotype

    Get PDF
    Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state

    Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Get PDF
    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity

    Get PDF
    MLL-fusions represent a large group of leukemia drivers, whose diversity originates from the vast molecular heterogeneity of C-terminal fusion partners of MLL. While studies of selected MLL-fusions have revealed critical molecular pathways, unifying mechanisms across all MLL-fusions remain poorly understood. We present the first comprehensive survey of protein-protein interactions of seven distantly related MLL-fusion proteins. Functional investigation of 128 conserved MLL-fusion-interactors identifies a specific role for the lysine methyltransferase SETD2 in MLL-leukemia. SETD2 loss causes growth arrest and differentiation of AML cells, and leads to increased DNA damage. In addition to its role in H3K36 tri-methylation, SETD2 is required to maintain high H3K79 di-methylation and MLL-AF9-binding to critical target genes, such as Hoxa9. SETD2 loss synergizes with pharmacologic inhibition of the H3K79 methyltransferase DOT1L to induce DNA damage, growth arrest, differentiation, and apoptosis. These results uncover a dependency for SETD2 during MLL-leukemogenesis, revealing a novel actionable vulnerability in this disease

    Investigating the non-specific effects of BCG vaccination on the innate immune system in Ugandan neonates: study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: The potential for Bacillus Calmette-Guérin (BCG) vaccination to protect infants against non-mycobacterial disease has been suggested by a randomised controlled trial conducted in low birth-weight infants in West Africa. Trials to confirm these findings in healthy term infants, and in a non-West African setting, have not yet been carried out. In addition, a biological mechanism to explain such heterologous effects of BCG in the neonatal period has not been confirmed. This trial aims to address these issues by evaluating whether BCG non-specifically enhances the innate immune system in term Ugandan neonates, leading to increased protection from a variety of infectious diseases. METHODS: This trial will be an investigator-blinded, randomised controlled trial of 560 Ugandan neonates, comparing those receiving BCG at birth with those receiving BCG at 6 weeks of age. This design allows comparison of outcomes between BCG-vaccinated and -naïve infants until 6 weeks of age, and between early and delayed BCG-vaccinated infants from 6 weeks of age onwards. The primary outcomes of the study will be a panel of innate immune parameters. Secondary outcomes will include clinical illness measures. DISCUSSION: Investigation of the possible broadly protective effects of neonatal BCG immunisation, and the optimal vaccination timing to produce these effects, could have profound implications for public healthcare policy. Evidence of protection against heterologous pathogens would underscore the importance of prioritising BCG administration in a timely manner for all infants, provide advocacy against the termination of BCG's use and support novel anti-tuberculous vaccine strategies that would safeguard such beneficial effects. TRIAL REGISTRATION: ISRCTN59683017 : registration date: 15 January 2014

    State-resolved attosecond reversible and irreversible dynamics in strong optical fields

    Get PDF
    Strong-field ionization (SFI) is a key process for accessing real-time quantum dynamics of electrons on the attosecond timescale. The theoretical foundation of SFI was pioneered in the 1960s, and later refined by various analytical models. While asymptotic ionization rates predicted by these models have been tested to be in reasonable agreement for a wide range of laser parameters, predictions for SFI on the sub-laser-cycle timescale are either beyond the scope of the models or show strong qualitative deviations from full quantum-mechanical simulations. Here, using the unprecedented state specificity of attosecond transient absorption spectroscopy, we follow the real-time SFI process of the two valence spin–orbit states of xenon. The results reveal that the irreversible tunnelling contribution is accompanied by a reversible electronic population that exhibits an observable spin–orbit-dependent phase delay. A detailed theoretical analysis attributes this observation to transient ground-state polarization, an unexpected facet of SFI that cannot be captured by existing analytical models that focus exclusively on the production of asymptotic electron/ion yields
    • …
    corecore