83 research outputs found
Improving data availability for brain image biobanking in healthy subjects: practice-based suggestions from an international multidisciplinary working group
International audienceBrain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function
Quantum simulation of the Hubbard model with dopant atoms in silicon
In quantum simulation, many-body phenomena are probed in controllable quantum
systems. Recently, simulation of Bose-Hubbard Hamiltonians using cold atoms
revealed previously hidden local correlations. However, fermionic many-body
Hubbard phenomena such as unconventional superconductivity and spin liquids are
more difficult to simulate using cold atoms. To date the required single-site
measurements and cooling remain problematic, while only ensemble measurements
have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low
effective temperatures with single-site resolution using subsurface dopants in
silicon. We measure quasiparticle tunneling maps of spin-resolved states with
atomic resolution, finding interference processes from which the entanglement
entropy and Hubbard interactions are quantified. Entanglement, determined by
spin and orbital degrees of freedom, increases with increasing covalent bond
length. We find separation-tunable Hubbard interaction strengths that are
suitable for simulating strongly correlated phenomena in larger arrays of
dopants, establishing dopants as a platform for quantum simulation of the
Hubbard model.Comment: 6 pages, 5 figures. Supplementary: 13 pages, 7 figures. New version
with some additional discussion, accepted in Nature Communication
Unmet needs and current and future approaches for osteoporotic patients at high risk of hip fracture
- …