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Quantum simulation of the Hubbard model
with dopant atoms in silicon
J. Salfi1, J.A. Mol1, R. Rahman2, G. Klimeck2, M.Y. Simmons1, L.C.L. Hollenberg3 & S. Rogge1

In quantum simulation, many-body phenomena are probed in controllable quantum systems.

Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously

hidden local correlations. However, fermionic many-body Hubbard phenomena such as

unconventional superconductivity and spin liquids are more difficult to simulate using cold

atoms. To date the required single-site measurements and cooling remain problematic, while

only ensemble measurements have been achieved. Here we simulate a two-site Hubbard

Hamiltonian at low effective temperatures with single-site resolution using subsurface

dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with

atomic resolution, finding interference processes from which the entanglement entropy and

Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of

freedom, increases with increasing valence bond length. We find separation-tunable

Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena

in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the

Hubbard model.
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Q
uantum simulation offers a means to probe many-body
physics that cannot be simulated efficiently by classical
computers, using controllable quantum systems to physically

realize a desired many-body Hamiltonian1–3. In the analogue
approach to quantum simulation exemplified by cold atoms in
optical lattices4,5, the simulator’s Hamiltonian maps to the desired
Hamiltonian. Compared to digital quantum simulation, realized via
complex sequences of gate operations6,7, analogue quantum
simulation is usually carried out with simpler building blocks. For
example, the Heisenberg and Hubbard Hamiltonians of great interest
in many-body physics are directly synthesized by cold atoms in
optical lattices2,3. Although of immense interest and proposed long
ago8, analogue simulation of fermionic Hubbard systems has proven
to be very challenging2,3. The anticipated regime of the intensely
debated spin liquid, unconventional superconductivity and
pseudogap9–11 has yet to be accessed even for cold atoms. Here,
the required low temperature Tot/30 is problematic due to the weak
tunnel coupling t of cold atoms5,12. Moreover, experimentally
resolving individual lattice sites, crucial elsewhere in Bose–Hubbard
simulation4, remains very challenging in quantum simulation of the
Hubbard model5.

Here, we perform atomic resolution measurements resolving
spin–spin interactions of individual dopants, realizing an
analogue quantum simulation of a two-site Hubbard system.
We demonstrate the much desired combination of low effective
temperatures, single-site spatial resolution, and non-perturbative
interaction strengths of great importance in condensed matter9–11.
The dopants’ physical Hamiltonian Hsim, determined at the time
of fabrication3, maps to an effective Hubbard Hamiltonian
Hsys¼

P
i 6¼ j;s ðtijc

y
iscjsþ h:c:Þþ

P
i;s Uni"ni#, where U is the

on-site Coulomb repulsion, cyis (cis) creates (destroys) a fermion
at lattice site i with spin s, nis¼cyiscis is the number operator, and
h.c. is the Hermitian conjugate. Here, it is desirable to achieve non-
perturbative (intermediate) interaction strengths U=t associated
with quantum fluctuations and emergent phenomena9–11, that is,
beyond perturbative Heisenberg interactions (large U=t) realized in
photon-based13 and ion-based14 simulations, and magnetic ions on
metal surfaces15. We focus on the system ground state, prepared by
relaxation on cooling3, rather than system dynamics.

Because the states of our artificial Hubbard system are coupled
and interacting, tunnelling spectroscopy locally probes the
spectral function. The spectral function is of key interest in
many-body physics because it provides rich information on
interactions16,17, and is highly sought after in future ‘cold-atom
tunnelling microscope’ experiments18. For our few-body system,
the local spectral function describes the quasi-particle
wavefunction (QPWF)19–22 and the discrete coupled-spin
spectrum of the dopants. We find that interference of atomic
orbitals directly contained in the QPWF allows us to quantify the
electron–electron correlations and the entanglement entropy.
The entanglement entropy is a fundamental concept for
correlated many-body phases23–26 that has thus far evaded
measurement for fermions. In the counterintuitive regime of our
experiments, entanglement entropy increases as the valence bond
is stretched, as Coulomb interactions overcome quantum
tunnelling. In our system, the entanglement entropy is directly
related to the Hubbard interactions U=t, and we find that U=t is
tunable with dopant separation, increasing from 4-14 for d/
aB¼ 2.2-3.7, where aB¼ 1.3 nm is the effective Bohr radius.
This range, of interest to simulate unconventional
superconductivity and spin liquids9–11, is realized here due to
the large Bohr radii of the hydrogenic states. The semiconductor
host allows for electrostatic control of the chemical potential27,28,
desirable to dynamically control filling factor9,11 but not possible
for ions on metal surfaces15.

Results
Spectroscopy of coupled-spin system. Subsurface boron accep-
tors in silicon were identified at 4.2 K as individual protru-
sions29,30 (density B1011 cm� 2) in constant current images due
to resonant tunnelling at a sample bias U¼ þ 1.6 V, and due to
the acceptor ion’s influence on the valence density of states at
U¼ � 1.5 V. The sample was prepared by ultra-high vacuum
flash annealing at 1,200 �C and hydrogen termination. The
observed subsurface acceptors had typical depths29,30 o3 nm,
and correspondingly, a volume density 425 times less than the
bulk doping 8� 1018 cm� 3. Pairs of nearby acceptors with
dt5 nm were also found, with a smaller density B109 cm� 2.

The spectrum and spatial tunnelling probability of the coupled
acceptors were investigated at T¼ 4.2 K via single-hole tunnelling
from a reservoir in the substrate to the dopant pair, to the tip29,30

(Fig. 1a). For the dopant pair in Fig. 1b (top), dI/dU measured
along the inter-dopant axis (Fig. 1b, bottom) contains a peaks for
each state entering the bias window, at UE0.2, 0.45, 0.55 and
0.8 V. Consistent with our single-acceptor29 and single-donor31
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Figure 1 | Spatially resolving coupled-spin states. (a) Atomic resolution

single-hole tunnelling probes the interacting states of coupled acceptor

dopants (Gout¼ tunnel rate to tip, Gout � Gin¼tunnel rate from reservoir).

The inter-acceptor coupling t obeys t� �hGin. dI/dU measures the

interacting states’ QPWF, which contains interference processes

connnected to two-body wavefunction amplitudes, the entanglement

entropy and effective Hubbard interactions. (b) Acceptor pair (double-

protrusion) in topography at U¼ þ 1.8 V and I¼ 300 pA (top), and

spectrally and spatially resolved dI/dU taken at a bias U¼ þ 2.0 V, where

topography is flat apart from atomic corrugation (bottom). VB, 2-hole

ground state and 2-hole excited states are indicated. (c) Effective energy

diagram of sequential hole tunnelling through 2-hole ground and excited

state of coupled acceptors.
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measurements near flat-band bias conditions, the bias for each
peak in the spectrum (Fig. 1b, bottom) is independent of tip
position. This rules out distortion of our quantum state images by
inhomogenous tip-induced potentials32 observed in other multi-
dopant systems33. These results can be attributed to weak
electrostatic control by the tip (Fig. 1c) and the states’
proximity to flat-band29–31, though a large tip radius may also
play a role.

The spectral and spatially resolved measurements (Fig. 1b)
directly demonstrate that the holes are interacting, as follows.
First, two peaks centred on dopant ions A or B are resolved in real
space (Fig. 1b). Second, energy differences between the peaks
resolved in real space are smaller than the B350 meV thermal
resolution. However, for orbitals at the same energy to not
interact, their overlap must vanish. Since the measured orbitals
have a strong overlap, the sites are tunnel coupled, irrespective of
the details of the tunnelling current profile. The number of states
observed, their energy differences, and their energies relative to
the Fermi energy confirm that the observed states are two-hole
states (Supplementary Figs 1 and 2).

Correlations and entanglement from Hubbard interactions.
The ground state of a Hubbard model with non-perturbative inter-
actions is governed by H in Fig. 2a in the subspace of
j"; #i¼cyA"c

y
B#j 0i, #; "j i¼cyA#c

y
B" 0j i, "#;j i¼cyA"c

y
A# 0j i and

; "#j i¼cyB"c
y
B# 0j i, where cyis creates a localized electron on site iA{A,

B} with spin s 2 "; #f g, and 0j i is the vacuum state. The ground
state is a superposition CSj i¼gc "; #j i� #; "j ið Þþ gi "#;j i þ ; "#j ið Þ,
where gc (gi) is the probability amplitude for a covalent (ionic)
configuration (Fig. 2b). Rewriting the state in a basis of even and odd
orbitals, jCSi¼geeje"e#i� goo o"o#

�� �
, where gee (goo) is the prob-

ability amplitude of the ‘even/even’ (‘odd/odd’) configuration.
In limit of small tunnel couplings (large U=t, Fig. 2b) the

Hubbard system may be described by perturbative Heisenberg spin
interactions. For vanishing t, the ground state is a Heitler–London
singlet of localized spins, CSj i¼2� 1=2 "; #j i� #; "j ið Þ, with no

contributions from "#;j i and ; "#j i. Due to vanishing wavefunction
overlap the electrons can be associated with sites A and B (they are
distinguishable23,34,35), and the spin at site A depends on the spin
at site B as for a maximally entangled Bell state. In the limit
of vanishing interactions (U=t ! 0, Fig. 2b) corresponding to a
tight-binding approximation, the spins delocalize and
CSj i¼1

2 "; #j i� #; "j ið Þþ 1
2 "#;j i þ ; "#j ið Þ. In a molecular orbital

(MO) basis, the ground state is CSj i¼ e"e#
�� �

, which is a single
Slater determinant. Although this state is a singlet (one spin up,
one spin down) due to fundamental indistinguishability, the
electrons can be ascribed independent properties because they
occupy the same orbital, and the state is uncorrelated23,34,35.

For intermediate U=t, where tunnelling and Coulomb interac-
tions compete non-perturbatively2,3,9,11, tunnelling hybridizes the
doubly-occupied configurations "#;j i and ; "#j i into the ground
state, such that the particles lose their individual identities. Here,
the von Neumann entanglement entropy quantifies genuine
entanglement (inter-dependency of properties), distinguishing it
from exchange-correlations due to indistinguishability23,26,35.
Employing the convention36 S¼0 (1) for zero (maximal)
entanglement, S¼� geej j2log2 geej j2� gooj j2log2 gooj j2 increases as
U=t increases and coherent localization occurs (Fig. 2c),
saturating at value of 1.

We now discuss the spatial tunnelling maps of the two-hole
ground states for different inter-acceptor distances. Obtained by
integrating the lowest voltage dI/dU peak, the maps are shown in
Fig. 3a–c for distances d/aB¼ 2.2, 2.7 and 3.5 (aB¼ 1.3 nm) having
orientations ±2� from h110i, 8±2� from h100i and 3±2� from
h110i, respectively. The multi-nm spatial extent of the states reflects
the extended wave-like nature of the acceptor-bound holes, owing to
their shallow energy levels, which contrasts Mn ions on GaAs
surfaces37, magnetic ions on metals15, and Si(001):H dangling
bonds38. Consequently, their envelopes are amenable to effective-
mass analysis with lattice frequencies filtered out19,20,28,39. Consistent
with measurements of single acceptors at similar depths on resonance
at flatband29,30, the states have predominantly s-like envelopes with
slight extension along [110] directions, as expected when symmetry is
not strongly perturbed by the surface. Depths of the d/aB¼ 2.7 and
d/aB¼ 3.5 pairs were estimated to be B0.9 nm, and for
d/aB¼ 2.2, B0.6 nm (see Supplementary Fig. 3).

We employed full-configuration interaction calculations of the
singlet ground state CSj i to confirm that Coulomb correlations of
coupled acceptors influence the ground state in a way that mimics
the S¼ 1/2 Hubbard model. In particular, for d/aBB2, CSj i
is predominantly composed of cye;3=2cye;� 3=2 0j i, a singlet of
two even ±‘3/2’ spin MOs. With increasing d, interactions
enhance the probability amplitude of the cyo;3=2cyo;� 3=2 0j i singlet
with two odd orbitals, analogous to the Hubbard Hamiltonian
(Fig. 2b). The spins ±‘3/2’ are predominantly composed of
3=2; � 3=2j i valence band (VB) Bloch states. In particular, the

low-lying ±‘1/2’ spin excitations of each acceptor30, which are
predominantly composed of 3=2; � 1=2j i Bloch states, do not
qualitatively change the description. We also note that for d/
aB\2, the MOs are essentially linear combinations atomic
orbitals having the effective Bohr radii of single acceptors.

Single-hole tunnelling transport through our coupled-dopant
system locally probes the spectral QPWF19–21. When Gout � Gin
(Fig. 1a), the single-hole tunnelling rate is essentially governed by
Gout, the tunnel-out rate31. In the present case, single-hole
tunnelling from the two-hole system to a single-hole final state
fj i¼cyf 0j i (Fig. 1) contributes Gf

outðrÞ¼jhf jĈ rð Þ CSj ij2, where

hf jĈðrÞjCSi is the QPWF, Ĉ rð Þ¼
P

j fj rð Þcj is the field operator,

cyj creates a single-hole MO eigenstate fj(r) of the system19, and

the total tunnel rate is G rð Þ¼
P

f G
f
out rð Þ.
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Figure 2 | Hubbard interactions and entanglement entropy. (a) Two-site

Hubbard Hamiltonian in the subspace of the ground state, with tunnel

coupling t hybridizing singly- and doubly-occupied configurations, for sites

A (red orbital) and B (blue orbital). (b) Dependence of probability

amplitudes on interactions U=t: gc (green dashed) and gi (green solid) for

configurations "; #j i� #; "j ið Þ and "#;j i þ ; "#j ið Þ, and gee and goo for e"e#
�� �

and o"o#
�� �

, respectively. (c) Entanglement entropy S increases with

increasing Hubbard interactions U=t. This occurs because of localization

of red and blue orbitals associated with spins in the singlet, as illustrated

in the insets.
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From our QPWF description of coupled dopants, we
obtain a spatial tunnelling probability G r; geej j; gooj jð Þ /
geej j2 fe rð Þj j2þ gooj j2 fo rð Þj j2 for the ground state. Here, |gee|2

and (|goo|2) contain constructive (destructive) interference
corresponding to even (odd) linear combinations of atomic
orbitals fe(r1) (fo(r1)) (note: |gee|2þ |goo|2¼ 1). To obtain |goo|2,
data were fit to G(r, |gee|,|goo|), assuming linear combinations of
parametrized s-like atomic orbitals for fe(r) and fo(r) appro-
priate for subsurface acceptors. The QPWF and atomic orbitals
are described in Supplementary Figs 4–6.

The least-squares fits in Fig. 3d–f (coloured lines) of
G(r, |gee|, |goo|) are in good agreement with data (squares), for
d/aB¼ 2.2, 2.7 and 3.5. For comparison with the data, grey curves
are shown for both the uncorrelated (maximally correlated) state
with |goo|¼ 0 (|goo|/|gee|¼ 1) in Fig. 3d–f. We note that all three
separations exhibit interaction effects at the midpoint of the ions,
where the atomic orbital quantum interference is strongest.
We obtain |goo|2¼ 0.12±0.06, 0.23±0.07 and 0.39±0.08 for
d/aB¼ 2.2, 2.7 and 3.5. Data taken at higher tip heights gave
identical results to within experimental errors (see Supplementary
Figs 7 and 8), independently verifying that the tip does not
influence our results.

The Coulomb correlations, embodied both in C¼2 gooj j2
(Fig. 4a) and the entanglement entropy S¼� geej j2log2 geej j2�

gooj j2log2 gooj j2 (Fig. 4b), could be evaluated directly from the fit,
and both increase with increasing d. The one-to-one mapping
from S to U=t (Fig. 2c) was used to determine the effective
Hubbard interactions from the entanglement entropy in Fig. 4b.
We obtain U=t � 3:5, 6.4 and 14, for d/aB¼ 2.2, 2.7 and 3.5,
respectively (Fig. 4c), which increase as the tunnel coupling
decreases.

We conclude the analysis of the QPWFs with some critical
remarks on correlations extracted from our fitting model,
recalling that the large spatial overlap of the spectrally over-
lapping acceptor-bound holes directly shows their states are
tunnel coupled. First, the Coulomb correlations have a systematic
effect on interference in the QPWF such that the least-squares
error is significantly worse if |goo|2 is forced to zero in the fitting
model (Supplementary Table 1). Second, if applied to very far
apart dopants where the ground state can still be resolved, our
fitting model would not give a spurious result that the two
dopants are highly correlated. This follows because the difference
between |fe(r)|2 and |fo(r)|2, which reflects the interference of
atomic orbitals and is used to detect correlations, tends to zero as
d/aB increases. Data (Fig. 3a–c) presented here are for coupled
dopants that we found to be (i) well isolated from other dopants
or dangling bonds, and (ii) at identical depths, as evidenced by
the spatial extent and brightness of the atomic orbitals. When the
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latter is not satisfied, the atomic levels can be detuned,
introducing more parameters to the fit.

Comparison with theory. These experimental results obey the
trends predicted by our theory calculations for the spin-orbit
coupled VB. Predictions in Fig. 4a,b for displacements along
h100i (blue solid line) and h110i (red solid line) both show
increasing correlations and entanglement with increasing dopant
separation. Moreover, we find that the observed and predicted
entanglement entropy qualitatively reproduce a single-band
model (Fig. 4a,b, dashed lines). This result implies that inter-hole
Hubbard interactions follow an essentially hydrogenic trend with
atomic separation, even for non-perturbative interactions
U=t¼4! 14.

The hydrogenic nature of S and U=t persists in spite of the ±
‘1/2’ spin excited states of a single acceptors. Such ±‘1/2’ single-
acceptor excited states states are found nominally DB1–2 meV
above the ±‘3/2’ spin ground state due to inversion symmetry
breaking at the interface30. Although t4D, S and U=t remain
hydrogenic in our calculations because the ‘1/2’ spin excited state
has an s-like envelope whose spatial extent is similar to (1) the
s-like ± ‘3/2’ ground state and (2) the scaled hydrogenic ground
state. Otherwise, single particle ±‘1/2’ states would hybridize
stronger than single particle ±‘3/2’ states, form the 2-hole singlet
at smaller separations, and localize more slowly relative to
molecular hydrogen with increasing d. Furthermore, the
polarization of the ±‘3/2’ and ±‘1/2’ states into 3=2; � 3=2j i
and 3=2; � 1=2j i components, respectively, limits the mixing of
±‘1/2’ states into the ground state.

Spin-excited states and effective temperature. Finally, we dis-
cuss the observed excited states, which confirm that the inter-
acceptor tunnel coupling dominates thermal and tunnel-coupling
effects of the reservoir. The energies of the states were determined
by fitting the single-hole transport lineshapes40 of the coupled
acceptors (Supplementary Figs 1 and 2). For the first excited state
we found 5.2±0.6 and 1.2±0.2 meV for d/aB¼ 2.2 and 3.5,
respectively (� 110h i orientation), and 1.6±0.7 meV for
d/aB¼ 2.7 (� 110h i orientation). Shown in Fig. 5a, these
energies are too small to add another hole, which would
require E50 meV for an acceptor in bulk silicon. However, the
energies agree well with our predictions for two-hole excited
states of coupled hole spins ±‘3/2’ and ±‘1/2’, that is, 8.5 and

1.5 meV for d¼ 2.2aB and d¼ 3.5aB (h110i orientation), and
2.0 meV (h100i orientation). Here we note that some of the
predicted coupled-spin excited states (Fig. 5b) are
unconventional: a singlet jSmJ i and triplet TmJ

�� �
of two ‘3/2’

holes (orange lines) and two ‘1/2’ holes (black lines) are obtained,
where S3=2

�� �
is the ground state for all separations. More subtly,

two manifolds jQi
3=2;1=2i, jQ3=2;1=2i, i¼ 1 y 4, containing four

states are predicted (green lines), where one ±‘3/2’ spin level and
one ±‘1/2’ spin level is occupied. For d/aB¼ 2.2 and 2.7 (d/
aB¼ 3.5), the measured energies are in better agreement with
predictions for jQi

3=2;1=2i ðjT3=2iÞ excitations.
The inter-acceptor tunnel couplings t (ratios t/T) were estimated

to be 12 meV (30), 7 meV (20) and 3.5 meV (10) for d/aB¼ 2.2, 2.7
and 3.5, respectively, at T¼ 4.2 K. Such couplings t exceed the
reservoir coupling Gin (Supplementary Table 2) to the substrate by
more than 50� . Combined with bias UB0.2–0.3 V needed to
bring the level into resonance, this rules out coherent interactions
with substrate and tip reservoirs41. Note that the measured energy
splittings imply small thermal excited-state populations of t10� 5,
t10� 2 and t10� 1 for d/aB¼ 2.2, 2.7 and 3.5, respectively.

Discussion
We performed atomic resolution measurements resolving spin–
spin interactions of interacting dopants, realizing quantum
simulation of a two-site Hubbard system. Analyzing these local
measurements of the spectral function17, we find increasing
Coulomb correlations and entanglement entropy as the system is
‘stretched’23,35,42 in the regime of non-perturbative interaction
strengths U=t. Our experiment is the first to combine low
effective temperatures t/TB30 at 4.2 K and single-site
measurement resolution, considered essential3,5,12 to simulate
emergent Hubbard phenomena9,11. Lower effective temperatures
t/TB420 are possible at T¼ 0.3 K. For example, 4� 4 Hubbard
lattices with U=t¼4! 7 and t/TB40 have recently been
associated with both the pairing state and pseudogap in systems
exhibiting unconventional superconductivity11.

The approach generalizes to donors, which can be placed in
silicon with atomic-scale precision27 and spatially measured
in situ after epitaxial encapsulation43,44. In contrast to disordered
systems45, atomically engineered dopant lattices will require weak
coupling to a reservoir, displaced either vertically as demonstrated
herein, or a laterally27. Strain could be used to further enhance
the splitting between light and heavy holes, or suppress valley
interference processes of electrons31,46. Interestingly, open
Hubbard systems which may exhibit unusual Kondo
behaviour47,48 could also be studied by this method. The
demonstrated measurement of spectral functions could be used
to directly determine excitation spectra, evaluate correlation
functions45 or obtain quasi-particle interference spectra17, all of
which contain rich information about many-body states,
including charge-ordering effects. We envision in-situ control of
filling factor9,11, using a back-gate or patterned side-gate27. These
capabilities will allow for quantum simulation of chains, ladders
or lattices9,11,49 at low effective temperatures, having interactions
that are engineered atom-by-atom.

Methods
Sample preparation. Samples were prepared by flash annealing a boron doped
(pE1019 cm� 3) silicon wafer at B1,200 �C in ultra-high vacuum (UHV) followed
by slow cooling at a rate 1 �Cmin

� 1 to 340 �C. Then, hydrogen passivation was
carried out B340 �C for 10 min by thermally cracking H2 gas at a pressure
PH2 ¼ 5� 10� 7 mbar.

Measurements. Atomic resolution single-hole tunnelling spectroscopy was
performed at 4.2 K using an UHV Omicron low temperature scanning tunnelling
microscope. Current I was measured as a function of sample bias U
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Figure 5 | Coupled-spin excitation spectrum. (a) Measured energy of first

excited state relative to ground state. (b) Schematic level diagram of

coupled acceptors, reflecting theory calculations, as a function of inter-

acceptor distance d/aB. Singlets SmJ
j i and triplets TmJ

j i are present for

interactions between two holes of mJ¼±‘3/2’ spin (orange) and two holes

of mJ¼±‘1/2’ (black) spin. States |Q3/2,1/2i and jQ03=2;1=2i are sets of four

closely spaced levels (green) with one ‘3/2’ spin hole and one ‘1/2’ spin

hole. Error bars denote 95% confidence intervals.
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and dI/dU was obtained by numerical differentiation. Details for the analysis of
the data are provided in Supplementary Figs 1–3 and 5–8 and Supplementary
Notes 1, 2, 4 and 5.

Theory. Theory calculations of interacting states were carried out using the con-
figuration interaction approach, in the Luttinger–Kohn representation including a
realistic description of the heavy-hole (J¼ 3/2, |mJ|¼ 3/2), light-hole (J¼ 3/2,
|mJ|¼ 1/2) and split-off hole (J¼ 1/2, |mJ|¼ 1/2) degrees of freedom. Details for the
theory are provided in Supplementary Fig. 4 and Supplementary Notes 3, 6 and 7.
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