1,112 research outputs found

    The age-metallicity structure of the Milky Way disc using APOGEE

    Get PDF
    The measurement of the structure of stellar populations in the Milky Way disc places fundamental constraints on models of galaxy formation and evolution. Previously, the disc’s structure has been studied in terms of populations defined geometrically and/or chemically, but a decomposition based on stellar ages provides a more direct connection to the history of the disc, and stronger constraint on theory. Here, we use positions, abundances and ages for 31 244 red giant branch stars from the Sloan Digital Sky Survey (SDSS)-APOGEE survey, spanning 3 < Rgc < 15 kpc, to dissect the disc into mono-age and mono-[Fe/H] populations at low and high [α/Fe]. For each population, with age < 2 Gyr and [Fe/H] < 0.1 dex, we measure the structure and surface-mass density contribution. We find that low [α/Fe] mono-age populations are fit well by a broken exponential, which increases to a peak radius and decreases thereafter. We show that this profile becomes broader with age, interpreted here as a new signal of disc heating and radial migration. High [α/Fe] populations are well fit as single exponentials within the radial range considered, with an average scalelength of 1.9 ± 0.1 kpc. We find that the relative contribution of high to low [α/Fe] populations at R0 is f� = 18 per cent ± 5 per cent; high [α/Fe] contributes most of the mass at old ages, and low [α/Fe] at young ages. The low and high [α/Fe] populations overlap in age at intermediate [Fe/H], although both contribute mass at R0 across the full range of [Fe/H]. The mass-weighted scaleheight hZ distribution is a smoothly declining exponential function. High [α/Fe] populations are thicker than low [α/Fe], and the average hZ increases steadily with age, between 200 and 600 pc

    Measuring Black Hole Formations by Entanglement Entropy via Coarse-Graining

    Full text link
    We argue that the entanglement entropy offers us a useful coarse-grained entropy in time-dependent AdS/CFT. We show that the total von-Neumann entropy remains vanishing even when a black hole is created in a gravity dual, being consistent with the fact that its corresponding CFT is described by a time-dependent pure state. We analytically calculate the time evolution of entanglement entropy for a free Dirac fermion on a circle following a quantum quench. This is interpreted as a toy holographic dual of black hole creations and annihilations. It is manifestly free from the black hole information problem.Comment: 25 pages, Latex, 8 figure

    Intertwining Relations for the Deformed D1D5 CFT

    Full text link
    The Higgs branch of the D1D5 system flows in the infrared to a two-dimensional N=(4,4) SCFT. This system is believed to have an "orbifold point" in its moduli space where the SCFT is a free sigma model with target space the symmetric product of copies of four-tori; however, at the orbifold point gravity is strongly coupled and to reach the supergravity point one needs to turn on the four exactly marginal deformations corresponding to the blow-up modes of the orbifold SCFT. Recently, technology has been developed for studying these deformations and perturbing the D1D5 CFT off its orbifold point. We present a new method for computing the general effect of a single application of the deformation operators. The method takes the form of intertwining relations that map operators in the untwisted sector before application of the deformation operator to operators in the 2-twisted sector after the application of the deformation operator. This method is computationally more direct, and may be of theoretical interest. This line of inquiry should ultimately have relevance for black hole physics.Comment: latex, 23 pages, 3 figure

    An area law for entanglement from exponential decay of correlations

    Get PDF
    Area laws for entanglement in quantum many-body systems give useful information about their low-temperature behaviour and are tightly connected to the possibility of good numerical simulations. An intuition from quantum many-body physics suggests that an area law should hold whenever there is exponential decay of correlations in the system, a property found, for instance, in non-critical phases of matter. However, the existence of quantum data-hiding state--that is, states having very small correlations, yet a volume scaling of entanglement--was believed to be a serious obstruction to such an implication. Here we prove that notwithstanding the phenomenon of data hiding, one-dimensional quantum many-body states satisfying exponential decay of correlations always fulfil an area law. To obtain this result we combine several recent advances in quantum information theory, thus showing the usefulness of the field for addressing problems in other areas of physics.Comment: 8 pages, 3 figures. Short version of arXiv:1206.2947 Nature Physics (2013

    Estimating stellar birth radii and the time evolution of the Milky Way's ISM metallicity gradient

    Get PDF
    We present a semi-empirical, largely model-independent approach for estimating Galactic birth radii, r_birth, for Milky Way disk stars. The technique relies on the justifiable assumption that a negative radial metallicity gradient in the interstellar medium (ISM) existed for most of the disk lifetime. Stars are projected back to their birth positions according to the observationally derived age and [Fe/H] with no kinematical information required. Applying our approach to the AMBRE:HARPS and HARPS-GTO local samples, we show that we can constrain the ISM metallicity evolution with Galactic radius and cosmic time, [Fe/H]_ISM(r, t), by requiring a physically meaningful r_birth distribution. We find that the data are consistent with an ISM radial metallicity gradient that flattens with time from ~-0.15 dex/kpc at the beginning of disk formation, to its measured present-day value (-0.07 dex/kpc). We present several chemo-kinematical relations in terms of mono-r_birth populations. One remarkable result is that the kinematically hottest stars would have been born locally or in the outer disk, consistent with thick disk formation from the nested flares of mono-age populations and predictions from cosmological simulations. This phenomenon can be also seen in the observed age-velocity dispersion relation, in that its upper boundary is dominated by stars born at larger radii. We also find that the flatness of the local age-metallicity relation (AMR) is the result of the superposition of the AMRs of mono-r_birth populations, each with a well-defined negative slope. The solar birth radius is estimated to be 7.3+-0.6 kpc, for a current Galactocentric radius of 8 kpc

    Role of anesthesiology curriculum in improving bag-mask ventilation and intubation success rates of emergency medicine residents: a prospective descriptive study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid and safe airway management has always been of paramount importance in successful management of critically ill and injured patients in the emergency department. The purpose of our study was to determine success rates of bag-mask ventilation and tracheal intubation performed by emergency medicine residents before and after completing their anesthesiology curriculum.</p> <p>Methods</p> <p>A prospective descriptive study was conducted at Nikoukari Hospital, a teaching hospital located in Tabriz, Iran. In a skills lab, a total number of 18 emergency medicine residents (post graduate year 1) were given traditional intubation and bag-mask ventilation instructions in a 36 hour course combined with mannequin practice. Later the residents were given the opportunity of receiving training on airway management in an operating room for a period of one month which was considered as an additional training program added to their Anesthesiology Curriculum. Residents were asked to ventilate and intubate 18 patients (Mallampati class I and ASA class I and II) in the operating room; both before and after completing this additional training program. Intubation achieved at first attempt within 20 seconds was considered successful. Successful bag-mask ventilation was defined as increase in ETCo<sub>2 </sub>to 20 mm Hg and back to baseline with a 3 L/min fresh gas-flow and the adjustable pressure limiting valve at 20 cm H<sub>2</sub>O. An attending anesthesiologist who was always present in the operating room during the induction of anesthesia confirmed the endotracheal intubation by direct laryngoscopy and capnography. Success rates were recorded and compared using McNemar, marginal homogeneity and paired t-Test tests in SPSS 15 software.</p> <p>Results</p> <p>Before the additional training program in the operating room, the participants had intubation and bag-mask ventilation success rates of 27.7% (CI 0.07-0.49) and 16.6% (CI 0-0.34) respectively. After the additional training program in the operating room the success rates increased to 83.3% (CI 0.66-1) and 88.8% (CI 0.73-1), respectively. The differences in success rates were statistically significant (P = 0.002 and P = 0.0004, respectively).</p> <p>Conclusions</p> <p>The success rate of emergency medicine residents in airway management improved significantly after completing anesthesiology rotation. Anesthesiology rotations should be considered as an essential component of emergency medicine training programs. A collateral curriculum of this nature should also focus on the acquisition of skills in airway management.</p

    Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization

    Full text link
    [EN] Seed transmission of Turnip yellow mosaic virus (TYMV, genus Tymovirus) was evaluated in the whole seeds and seedlings that emerged from three commercial Chinese cabbage (Brassica pekinensis) seed batches. Seedlings in the cotyledon stage and adult plants were assayed for TYMV by DAS-ELISA and confirmed by RT-PCR. The proportion of whole seeds infected with TYMV was at least 0.15 %. The seeds of the three seed batches were grown in Petri dishes, and surveyed in the cotyledon stage in trays that contained a peat:sand mixture grown in greenhouses or growth chambers, which were analysed in the cotyledon and adult stages. The seed-to-seedling transmission rate ranged from 2.5 % to 2.9 % in two different seed batches (lot-08 and lot-09, respectively). Spanish isolates derived from turnip (Sp-03) and Chinese cabbage (Sp-09 and Sp-13), collected in 2003, 2009 and 2013 in two different Spanish regions, were molecularly characterised by analysing the partial nucleotide sequences of three TYMV genome regions: partial RNA-dependent RNA polymerase (RdRp), methyltransferase (MTR) and coat protein (CP) genes. Phylogenetic analyses showed that the CP gene represented two different groups: TYMV-1 and TYMV-2. The first was subdivided into three subclades: European, Australian and Japanese. Spanish isolate Sp-03 clustered together with European TYMV group, whereas Sp-09 and Sp-13 grouped with the Japanese TYMV group, and all differed from group TYMV-2. The sequences of the three different genomic regions examined clustered into the same groups. The results suggested that Spanish isolates grouped according to the original hosts from which they were isolated. The inoculation of the Spanish TYMV isolates to four crucifer plants species (turnip, broccoli, Brunswick cabbage and radish) revealed that all the isolates infected turnip with typical symptoms, although differences were observed in other hosts.Alfaro Fernández, AO.; Serrano, A.; Tornos, T.; Cebrian Mico, MC.; Córdoba-Sellés, MDC.; Jordá, C.; Font San Ambrosio, MI. (2016). Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization. EUROPEAN JOURNAL OF PLANT PATHOLOGY. 146(2):433-442. doi:10.1007/s10658-016-0929-3S4334421462Assis Filho, M., & Sherwood, J. L. (2000). Evaluation of seed transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology, 90, 1233–1238.Benetti, M. P., & Kaswalder, F. (1983). Trasmisione per seme del virus del mosaico giallo rapa. Annali dell Istituto Sperimentale per la Patologia Vegetale, 8, 67–70.Blok, J., Mackenzie, A., Guy, P., & Gibbs, A. (1987). Nucleotide sequence comparisons of Turnip yellow mosaic virus isolates from Australia and Europe. Archives of Virology, 97, 283–295.Brunt, A., Crabtree, K., Dallwitz, M., Gibbs, A., Watson, L., & Zurcher, E.J. (1996). Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. URL http://biology.anu.edu.au/Groups/MES/vide/ .Campbell, R. N., Wipf-Scheibel, C., & Lecoq, H. (1996). Vector-assissted seed transmission of melon necrotic spot virus in melon. Phytopathology, 86, 1294–1298.Dreher, T. W., & Bransom, K. L. (1992). Genomic RNA sequence of Turnip yellow mosaic virus isolate TYMC, a cDNA-based clone with verified infectivity. Plant Molecular Biology, 18, 403–406.Fakhro, A., Von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gibbs, A. J., & Gower, J. C. (1960). The use of a multiple-transfer method in plant virus transmission studies: some statistical points arising in the analysis of results. Annals of Applied Biology, 48, 75–83.Hayden, C. M., Mackenzie, A. M., & Gibbs, A. J. (1998a). Virion protein sequence variation among Australian isolates of turnip yellow mosaic tymovirus. Archives of Virology, 143, 191–201.Hayden, C. M., Mackenzie, A. M., Skotnicki, M. L., & Gibbs, A. (1998b). Turnip yellow mosaic virus isolates with experimentally produced recombinant virion proteins. Journal of General Virology, 79, 395–403.Hein, A. (1984). Transmission of Turnip yellow mosaic virus through seed of Camelina sativa gold of pleasure. Journal of Plant Diseases and Protection, 91, 549–551.Herrera-Vásquez, J. A., Córdoba-Sellés, M. C., Cebrián, M. C., Alfaro-Fernández, A., & Jordá, C. (2009). Seed transmission of Melon necrotic spot virus and efficacy of seed-disinfection treatments. Plant Pathology, 58, 436–452.Hull, R. (2002). Matthews’ plant virology (4a ed.1001 pp). San Diego: Academic Press.Johansen, E., Edwards, M. C., & Hampton, R. O. (1994). Seed transmission of viruses: current perspectives. Annual Review of Phytopathology, 32, 363–386.Kirino, N., Inoue, K., Tanina, K., Yamazaki, Y., & Ohki, S. T. (2008). Turnip yellow mosaic virus isolated from Chinese cabbage in Japan. Journal of General Plant Pathology, 74, 331–334.Markham, R., & Smith, K. S. (1949). Studies on the virus of turnip yellow mosaic. Parasitology, 39, 330–342.Mathews, R. E. F. (1980). Turnip yellow mosaic virus, CMI/AAB Descriptions of plant virus No. 230 (No. 2 revised). Kew: Commonwealth Mycology Institute/Association of Applied Biologists.Mitchell, E. J., & Bond, J. M. (2005). Variation in the coat protein sequence of British isolates of Turnip yellow mosaic virus and comparison with previously published isolates. Archives of Virology, 150, 2347–2355.Pagán, I., Fraile, A., Fernández-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philosophical Transations of the Royal Society Biological Sciences, 365, 1983–1995.Paul, H. L., Gibbs, A., & Wittman-Liebold, B. (1980). The relationships of certain Tymoviruses assessed from the amino acid composition of their coat proteins. Intervirology, 13, 99–109.Pelikanova, J. (1990). Garlic mustard a spontaneous host of TYMV. Ochrana Rostlin, 26, 17–22.Procházková, Z. (1980). Host range and symptom differences between isolates of Turnip mosaic virus obtained from Sisymbrium loeselii. Biologia Plantarum, 22, 341–347.Rimmer, S. R., Shtattuck, V. I., & Buchwaldt, L. (2007). Compendium of brassica diseases (1ª Edición ed.p. 117). USA: APS press.Rot, M. E., & Jelkman, W. (2001). Characterization and detection of several filamentous viruses of cherry: Adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. European Journal of Plant Pathology, 107, 411–420.Sabanadzovic, S., Abou-Ghanem, N., Castellano, M. A., Digiaero, M., & Martelli, G. P. (2000). Grapevine fleck virus-like in Vitis. Archives of Virology, 145, 553–565.Špack, J., & Kubelková, D. (2000). Serological variability among European isolates of Radish mosaic virus. Plant Pathology, 49, 295–301.Špack, J., Kubelková, D., & Hnilicka, E. (1993). Seed transmission of Turnip yellow mosaic virus in winter turnip and winter oilseed rapes. Annals of Applied Biology, 123, 33–35.Stobbs, L. W., Cerkauskas, R. F., Lowery, T., & VanDriel, L. (1998). Occurrence of Turnip yellow mosaic virus on oriental cruciferours vegetables in Southern Ontario, Canada. Plant Disease, 82, 351.Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739

    Towards the fast scrambling conjecture

    Get PDF
    Many proposed quantum mechanical models of black holes include highly nonlocal interactions. The time required for thermalization to occur in such models should reflect the relaxation times associated with classical black holes in general relativity. Moreover, the time required for a particularly strong form of thermalization to occur, sometimes known as scrambling, determines the time scale on which black holes should start to release information. It has been conjectured that black holes scramble in a time logarithmic in their entropy, and that no system in nature can scramble faster. In this article, we address the conjecture from two directions. First, we exhibit two examples of systems that do indeed scramble in logarithmic time: Brownian quantum circuits and the antiferromagnetic Ising model on a sparse random graph. Unfortunately, both fail to be truly ideal fast scramblers for reasons we discuss. Second, we use Lieb-Robinson techniques to prove a logarithmic lower bound on the scrambling time of systems with finite norm terms in their Hamiltonian. The bound holds in spite of any nonlocal structure in the Hamiltonian, which might permit every degree of freedom to interact directly with every other one.Comment: 34 pages. v2: typo correcte

    Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella vaginalis

    Get PDF
    Bacterial vaginosis is a genital tract infection, thought to be caused by transformation of a lactobacillus-rich flora to a dysbiotic microbiota enriched in mixed anaerobes. The most prominent of these is Gardnerella vaginalis (GV), an anaerobic pathogen that produces sialidase enzyme to cleave terminal sialic acid residues from human glycans. Notably, high sialidase activity is associated with preterm birth and low birthweight. We explored the potential of the sialidase inhibitor Zanamavir against GV whole cell sialidase activity using methyl-umbelliferyl neuraminic acid (MU-NANA) cleavage assays, with Zanamavir causing a 30% reduction in whole cell GV sialidase activity (p < 0.05). Furthermore, cellular invasion assays using HeLa cervical epithelial cells, infected with GV, demonstrated that Zanamivir elicited a 50% reduction in cell association and invasion (p < 0.05). Our data thus highlight that pharmacological sialidase inhibitors are able to modify BV-associated sialidase activity and influence host-pathogen interactions and may represent novel therapeutic adjuncts
    • …
    corecore