157 research outputs found

    Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study.

    Get PDF
    BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70-0·89], p=0·0001, for 70-79 years; 0·52 [0·46-0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75-80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council

    Cystinosin, MPDU1, SWEETs and KDELR Belong to a Well-Defined Protein Family with Putative Function of Cargo Receptors Involved in Vesicle Trafficking

    Get PDF
    Classification of proteins into families based on remote homology often helps prediction of their biological function. Here we describe prediction of protein cargo receptors involved in vesicle formation and protein trafficking. Hidden Markov model profile-to-profile searches in protein databases using endoplasmic reticulum lumen protein retaining receptors (KDEL, Erd2) as query reveal a large and diverse family of proteins with seven transmembrane helices and common topology and, most likely, similar function. Their coding genes exist in all eukaryota and in several prokaryota. Some are responsible for metabolic diseases (cystinosis, congenital disorder of glycosylation), others are candidate genes for genetic disorders (cleft lip and palate, certain forms of cancer) or solute uptake and efflux (SWEETs) and many have not yet been assigned a function. Comparison with the properties of KDEL receptors suggests that the family members could be involved in protein trafficking and serve as cargo receptors. This prediction sheds new light on a range of biologically, medically and agronomically important proteins and could open the way to discovering the function of many genes not yet annotated. Experimental testing is suggested

    Influence of Different Application of Lubricants on Wear and Pre-existing Rolling Contact Fatigue Cracks of Rail Materials

    Get PDF
    Rolling contact fatigue (RCF) of rail can be a significant problem affecting safety and maintenance. Rail materials have been optimized to reduce it, but not enough is known about how friction management products applied to the rail affect crack growth. This study presents experimental results carried out to explore the influence of different lubricants and application orders on wear and pre-existing RCF cracks in rail materials. The results indicate that the types or properties of lubricants have a vital role in the wear rate and fatigue crack growth characteristics of rail materials after conditioning with 5000 dry cycles to initiate cracks. Using a different application order of two lubricants has a significant influence on the crack growth angles in the rail rollers

    An Intermittent Live Cell Imaging Screen for siRNA Enhancers and Suppressors of a Kinesin-5 Inhibitor

    Get PDF
    Kinesin-5 (also known as Eg5, KSP and Kif11) is required for assembly of a bipolar mitotic spindle. Small molecule inhibitors of Kinesin-5, developed as potential anti-cancer drugs, arrest cell in mitosis and promote apoptosis of cancer cells. We performed a genome-wide siRNA screen for enhancers and suppressors of a Kinesin-5 inhibitor in human cells to elucidate cellular responses, and thus identify factors that might predict drug sensitivity in cancers. Because the drug's actions play out over several days, we developed an intermittent imaging screen. Live HeLa cells expressing GFP-tagged histone H2B were imaged at 0, 24 and 48 hours after drug addition, and images were analyzed using open-source software that incorporates machine learning. This screen effectively identified siRNAs that caused increased mitotic arrest at low drug concentrations (enhancers), and vice versa (suppressors), and we report siRNAs that caused both effects. We then classified the effect of siRNAs for 15 genes where 3 or 4 out of 4 siRNA oligos tested were suppressors as assessed by time lapse imaging, and by testing for suppression of mitotic arrest in taxol and nocodazole. This identified 4 phenotypic classes of drug suppressors, which included known and novel genes. Our methodology should be applicable to other screens, and the suppressor and enhancer genes we identified may open new lines of research into mitosis and checkpoint biology

    Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study

    Get PDF
    BACKGROUND: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions. METHODS: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London). FINDINGS: 74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model. INTERPRETATION: The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London

    The Elg1-RFC Clamp-Loading Complex Performs a Role in Sister Chromatid Cohesion

    Get PDF
    It is widely accepted that of the four Replication Factor C (RFC) complexes (defined by the associations of either Rfc1p, Ctf18p, Elg1p or Rad24p with Rfc2p-Rfc5p), only Ctf18-RFC functions in sister chromatid cohesion. This model is based on findings that CTF18 deletion is lethal in combination with mutations in either CTF7ECO1 or MCD1 sister chromatid cohesion genes and that ctf18 mutant cells exhibit cohesion defects. Here, we report that Elg1-RFC not only participates in cohesion but performs a function that is distinct from that of Ctf18-RFC. The results show that deletion of ELG1 rescues both ctf7eco1 mutant cell temperature sensitivity and cohesion defects. Moreover, over-expression of ELG1 enhances ctf7eco1 mutant cell phenotypes. These findings suggest that the balance of Ctf7pEco1p activity depends on both Ctf18-RFC and Elg1-RFC. We also report that ELG1 deletion produces cohesion defects and intensifies the conditional phenotype of mcd1 mutant cells, further supporting a role for Elg1-RFC in cohesion. Attesting to the specificity of these interactions, deletion of RAD24 neither suppressed nor exacerbated cohesion defects in either ctf7eco1 or mcd1 mutant cells. While parallel analyses failed to uncover a similar role in cohesion for Rad24-RFC, it is well known that Rad24-RFC, Elg1-RFC and Ctf18-RFC play key roles in DNA damage responses. We tested and found that Ctf7pEco1p plays a significant role in Rad24-RFC-based DNA response pathways. In combination, these findings challenge current views and document new and distinct roles for RFC complexes in cohesion and for Ctf7pEco1p in DNA repair

    The Peptidyl Prolyl Isomerase Rrd1 Regulates the Elongation of RNA Polymerase II during Transcriptional Stresses

    Get PDF
    Rapamycin is an anticancer agent and immunosuppressant that acts by inhibiting the TOR signaling pathway. In yeast, rapamycin mediates a profound transcriptional response for which the RRD1 gene is required. To further investigate this connection, we performed genome-wide location analysis of RNA polymerase II (RNAPII) and Rrd1 in response to rapamycin and found that Rrd1 colocalizes with RNAPII on actively transcribed genes and that both are recruited to rapamycin responsive genes. Strikingly, when Rrd1 is lacking, RNAPII remains inappropriately associated to ribosomal genes and fails to be recruited to rapamycin responsive genes. This occurs independently of TATA box binding protein recruitment but involves the modulation of the phosphorylation status of RNAPII CTD by Rrd1. Further, we demonstrate that Rrd1 is also involved in various other transcriptional stress responses besides rapamycin. We propose that Rrd1 is a novel transcription elongation factor that fine-tunes the transcriptional stress response of RNAPII

    Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study

    Get PDF
    Background: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. Methods: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. Findings: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. Interpretation: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. Funding: UK National Institute for Health Research and UK Medical Research Council
    • …
    corecore