34 research outputs found

    Perturbation of Mouse Retinal Vascular Morphogenesis by Anthrax Lethal Toxin

    Get PDF
    Lethal factor, the enzymatic moiety of anthrax lethal toxin (LeTx) is a protease that inactivates mitogen activated protein kinase kinases (MEK or MKK). In vitro and in vivo studies demonstrate LeTx targets endothelial cells. However, the effects of LeTx on endothelial cells are incompletely characterized. To gain insight into this process we used a developmental model of vascularization in the murine retina. We hypothesized that application of LeTx would disrupt normal retinal vascularization, specifically during the angiogenic phase of vascular development. By immunoblotting and immunofluorescence microscopy we observed that MAPK activation occurs in a spatially and temporally regulated manner during retinal vascular development. Intravitreal administration of LeTx caused an early delay (4 d post injection) in retinal vascular development that was marked by reduced penetration of vessels into distal regions of the retina as well as failure of sprouting vessels to form the deep and intermediate plexuses within the inner retina. In contrast, later stages (8 d post injection) were characterized by the formation of abnormal vascular tufts that co-stained with phosphorylated MAPK in the outer retinal region. We also observed a significant increase in the levels of secreted VEGF in the vitreous 4 d and 8 d after LeTx injection. In contrast, the levels of over 50 cytokines other cytokines, including bFGF, EGF, MCP-1, and MMP-9, remained unchanged. Finally, co-injection of VEGF-neutralizing antibodies significantly decreased LeTx-induced neovascular growth. Our studies not only reveal that MAPK signaling plays a key role in retinal angiogenesis but also that perturbation of MAPK signaling by LeTx can profoundly alter vascular morphogenesis

    Histamine Derived from Probiotic Lactobacillus reuteri Suppresses TNF via Modulation of PKA and ERK Signaling

    Get PDF
    Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H2 receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases

    CD56negCD16+NK cells are activated mature NK cells with impaired effector function during HIV-1 infection

    Get PDF
    BACKGROUND: A subset of CD3(neg)CD56(neg)CD16(+) Natural Killer (NK) cells is highly expanded during chronic HIV-1 infection. The role of this subset in HIV-1 pathogenesis remains unclear. The lack of NK cell lineage-specific markers has complicated the study of minor NK cell subpopulations. RESULTS: Using CD7 as an additional NK cell marker, we found that CD3(neg)CD56(neg)CD16(+) cells are a heterogeneous population comprised of CD7(+) NK cells and CD7(neg) non-classical myeloid cells. CD7(+)CD56(neg)CD16(+) NK cells are significantly expanded in HIV-1 infection. CD7(+)CD56(neg)CD16(+) NK cells are mature and express KIRs, the C-type lectin-like receptors NKG2A and NKG2C, and natural cytotoxicity receptors similar to CD7(+)CD56(+)CD16(+) NK cells. CD7(+)CD56(neg) NK cells in healthy donors produced minimal IFNγ following K562 target cell or IL-12 plus IL-18 stimulation; however, they degranulated in response to K562 stimulation similar to CD7(+)CD56(+) NK cells. HIV-1 infection resulted in reduced IFNγ secretion following K562 or cytokine stimulation by both NK cell subsets compared to healthy donors. Decreased granzyme B and perforin expression and increased expression of CD107a in the absence of stimulation, particularly in HIV-1-infected subjects, suggest that CD7(+)CD56(neg)CD16(+) NK cells may have recently engaged target cells. Furthermore, CD7(+)CD56(neg)CD16(+) NK cells have significantly increased expression of CD95, a marker of NK cell activation. CONCLUSIONS: Taken together, CD7(+)CD56(neg)CD16(+) NK cells are activated, mature NK cells that may have recently engaged target cells

    Progressive subcortical volume loss in treatment-resistant schizophrenia patients after commencing clozapine treatment

    Get PDF
    The association of antipsychotic medication with abnormal brain morphometry in schizophrenia remains uncertain. This study investigated subcortical morphometric changes 6 months after switching treatment to clozapine in patients with treatment-resistant schizophrenia compared with healthy volunteers, and the relationships between longitudinal volume changes and clinical variables. 1.5T MRI images were acquired at baseline before commencing clozapine and again after 6 months of treatment for 33 patients with treatment resistant schizophrenia and 31 controls, and processed using the longitudinal pipeline of Freesurfer v.5.3.0. Two-way repeated MANCOVA was used to assess group differences in subcortical volumes over time and partial correlations to determine association with clinical variables. Whereas no significant subcortical volume differences were found between patients and controls at baseline(F(8,52)=1.79; p= 0.101), there was a significant interaction between time, group and structure(F(7,143)=52.54, p<0.001). Corrected post-hoc analyses demonstrated that patients had significant enlargement of lateral ventricles (F(1,59)=48.89; p<0.001) and reduction of thalamus (F(1,59)=34.85; p<0.001), caudate (F(1,59)=59.35; p<0.001), putamen (F(1,59)=87.20; p<0.001) and hippocampus (F(1,59)=14.49; p<0.001) volumes. Thalamus and putamen volume reduction was associated with improvement in PANSS (r=0.42; p=0.021, r=0.39; p=0.033), SANS (r=0.36; p=0.049, r=0.40; p=0.027) and GAF (r=-0.39; p=0.038, r=-0.42; p=0.024) scores. Reduced thalamic volume over time was associated with increased serum clozapine level at follow-up (r=-0.44; p=0.010). Patients with treatment-resistant schizophrenia display progressive subcortical volume deficits after switching to clozapine despite experiencing symptomatic improvement. Thalamo-striatal progressive volumetric deficit associated with symptomatic improvement after clozapine exposure may reflect an adaptive response related to improved outcome rather than a harmful process

    Mixing omics:combining genetics and metabolomics to study rheumatic diseases

    Get PDF
    Metabolomics is an exciting field in systems biology that provides a direct readout of the biochemical activities taking place within an individual at a particular point in time. Metabolite levels are influenced by many factors, including disease status, environment, medications, diet and, importantly, genetics. Thanks to their dynamic nature, metabolites are useful for diagnosis and prognosis, as well as for predicting and monitoring the efficacy of treatments. At the same time, the strong links between an individual&#39;s metabolic and genetic profiles enable the investigation of pathways that underlie changes in metabolite levels. Thus, for the field of metabolomics to yield its full potential, researchers need to take into account the genetic factors underlying the production of metabolites, and the potential role of these metabolites in disease processes. In this Review, the methodological aspects related to metabolomic profiling and any potential links between metabolomics and the genetics of some of the most common rheumatic diseases are described. Links between metabolomics, genetics and emerging fields such as the gut microbiome and proteomics are also discussed

    Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP

    No full text
    Although extracellular ATP is abundant at sites of inflammation, its role in activating inflammasome signalling in neutrophils is not well characterized. In the current study, we demonstrate that human and murine neutrophils express functional cell-surface P2X(7)R, which leads to ATP-induced loss of intracellular K(+), NLRP3 inflammasome activation and IL-1β secretion. ATP-induced P2X(7)R activation caused a sustained increase in intracellular [Ca(2+)], which is indicative of P2X(7)R channel opening. Although there are multiple polymorphic variants of P2X(7)R, we found that neutrophils from multiple donors express P2X(7)R, but with differential efficacies in ATP-induced increase in cytosolic [Ca(2+)]. Neutrophils were also the predominant P2X(7)R-expressing cells during Streptococcus pneumoniae corneal infection, and P2X(7)R was required for bacterial clearance. Given the ubiquitous presence of neutrophils and extracellular ATP in multiple inflammatory conditions, ATP-induced P2X(7)R activation and IL-1β secretion by neutrophils likely has a significant, wide ranging clinical impact
    corecore