36 research outputs found
Rationale and design of the plate or pin (pop) study for dislocated midshaft clavicular fractures: study protocol for a randomised controlled trial
To describe the rationale and design of a future study comparing results of plate fixation and Elastic Stable Intramedullary Nailing (ESIN) with a Titanium Elastic Nail (TEN) for adults with a dislocated midshaft clavicular fracture. Prospective randomized multicenter clinical trial in two level 1 and one level 2 trauma centers. 120 patients between 18 and 65 years of age will be included. They are randomized to either plate fixation or ESIN with a TEN with a one year follow-up. Sixty patients will be treated with plate fixation and 60 patients will be treated with ESIN. Primary outcome parameter is the Disabilities of the Arm, Shoulder and Hand score after 6 months. Secondary outcome parameters are Constant Shoulder Score, complications, experienced pain, radiologic consolidation and cosmetics after both procedures. Prospective randomized studies comparing operative techniques for treatment of dislocated midshaft clavicular fracture are lacking. By studying shoulder function, complications, quality of life, radiographic union, cosmetics as well as experienced pain, a complete efficacy assessment of both procedures will be performed. The POP study is registered in the Dutch Trial Register (NTR NTR2438
Coronary microvascular resistance: methods for its quantification in humans
Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses
Evidence for widespread hydrated minerals on asteroid (101955) Bennu
Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7â”m and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4â”m) Bennuâs spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth
The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements
The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennuâs surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennuâs surface has been most recently migrating towards its equator (given Bennuâs increasing spin rate), we infer that Bennuâs surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennuâs top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennuâs top-shape morphology and its link to the formation of binary asteroids