3,987 research outputs found

    Career-Success Scale – A new instrument to assess young physicians' academic career steps

    Get PDF
    Background: Within the framework of a prospective cohort study of Swiss medical school graduates, a Career-Success Scale (CSS) was constructed in a sample of young physicians choosing different career paths in medicine. Furthermore the influence of personality factors, the participants' personal situation, and career related factors on their career success was investigated. Methods: 406 residents were assessed in terms of career aspired to, and their career progress. The Career-Success Scale, consisting of 7 items, was developed and validated, addressing objective criteria of academic career advancement. The influence of gender and career aspiration was investigated by a two-factorial analysis of variance, the relationships between personality factors, personal situation, career related factors and the Career-Success Scale by a multivariate linear regression analysis. Results: The unidimensional Career-Success Scale has an internal consistency of 0.76. It is significantly correlated at the bivariate level with gender, instrumentality, and all career related factors, particularly with academic career and received mentoring. In multiple regression, only gender, academic career, surgery as chosen specialty, and received mentoring are significant predictors. The highest values were observed in participants aspiring to an academic career, followed by those pursuing a hospital career and those wanting to run a private practice. Independent of the career aspired to, female residents have lower scores than their male colleagues. Conclusion: The Career-Success Scale proved to be a short, reliable and valid instrument to measure career achievements. As mentoring is an independent predictor of career success, mentoring programs could be an important instrument to specifically enhance careers of female physicians in academia

    Trophy hunting certification

    Get PDF
    Adaptive certification is the best remaining option for the trophy hunting industry in Africa to demonstrate sustainable and ethical hunting practices that benefit local communities and wildlife conservation

    Dynamic walking features and improved walking performance in multiple sclerosis patients treated with fampridine (4-aminopyridine)

    Get PDF
    Background: Impaired walking capacity is a frequent confinement in Multiple Sclerosis (MS). Patients are affected by limitations in coordination, walking speed and the distance they may cover. Also abnormal dynamic walking patterns have been reported, involving continuous deceleration over time. Fampridine (4-aminopyridine), a potassium channel blocker, may improve walking in MS. The objective of the current study was to comprehensively examine dynamic walking characteristics and improved walking capacity in MS patients treated with fampridine. Methods: A sample of N = 35 MS patients (EDSS median: 4) underwent an electronic walking examination prior to (Time 1), and during treatment with fampridine (Time 2). Patients walked back and forth a distance of 25 ft for a maximum period of 6 min (6-minute 25-foot-walk). Besides the total distance covered, average speed on the 25-foot distance and on turns was determined separately for each test minute, at Time 1 and Time 2. Results: Prior to fampridine administration, 27/35 patients (77 %) were able to complete the entire 6 min of walking, while following the administration, 34/35 patients (97 %) managed to walk for 6 min. In this context, walking distance considerably increased and treatment was associated with faster walking and turning across all six test minutes (range of effect sizes: partial eta squared = .34-.72). Importantly, previously reported deceleration across test minutes was consistently observable at Time 1 and Time 2. Discussion: Fampridine administration is associated with improved walking speed and endurance. Regardless of a treatment effect of fampridine, the previously identified, abnormal dynamic walking feature, i.e. the linear decline in walking speed, may represent a robust feature. Conclusions: The dynamic walking feature might hence be considered as a candidate for a new outcome measure in clinical studies involving interventions other than symptomatic treatment, such as immune-modulating medication. Trial registration: DRKS00009228 (German Clinical Trials Register). Date obtained: 25.08.2015

    Developing public health clinical decision support systems (CDSS) for the outpatient community in New York City: our experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing a clinically relevant set of quality measures that can be effectively used by an electronic health record (EHR) is difficult. Whether it is achieving internal consensus on relevant priority quality measures, communicating to EHR vendors' whose programmers generally lack clinical contextual knowledge, or encouraging implementation of EHR that meaningfully impacts health outcomes, the path is challenging. However, greater transparency of population health, better accountability, and ultimately improved health outcomes is the goal and EHRs afford us a realistic chance of reaching it in a scalable way.</p> <p>Method</p> <p>In this article, we summarize our experience as a public health government agency with developing measures for a public health oriented EHR in New York City in partnership with a commercial EHR vendor.</p> <p>Results</p> <p>From our experience, there are six key lessons that we share in this article that we believe will dramatically increase the chance of success. First, define the scope and build consensus. Second, get support from executive leadership. Third, find an enthusiastic and competent software partner. Fourth, implement a transparent operational strategy. Fifth, create and test the EHR system with real life scenarios. Last, seek help when you need it.</p> <p>Conclusions</p> <p>Despite the challenges, we encourage public health agencies looking to build a similarly focused public health EHR to create one both for improved individual patient as well as the larger population health.</p

    Extraction of BoNT/A, /B, /E, and /F with a Single, High Affinity Monoclonal Antibody for Detection of Botulinum Neurotoxin by Endopep-MS

    Get PDF
    Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies

    Electrical control over single hole spins in nanowire quantum dots

    Get PDF
    Single electron spins in semiconductor quantum dots (QDs) are a versatile platform for quantum information processing, however controlling decoherence remains a considerable challenge. Recently, hole spins have emerged as a promising alternative. Holes in III-V semiconductors have unique properties, such as strong spin-orbit interaction and weak coupling to nuclear spins, and therefore have potential for enhanced spin control and longer coherence times. Weaker hyperfine interaction has already been reported in self-assembled quantum dots using quantum optics techniques. However, challenging fabrication has so far kept the promise of hole-spin-based electronic devices out of reach in conventional III-V heterostructures. Here, we report gate-tuneable hole quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tuneable between hole and electron QDs, enabling direct comparison between the hyperfine interaction strengths, g-factors and spin blockade anisotropies in the two regimes

    Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA

    Infrared fixed point in quantum Einstein gravity

    Get PDF
    We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent Ξ½\nu of the correlation length is 1/2. However, there exists a certain extension of the model which gives finite correlation length in the broken symmetric phase. It typically appears in case of models possessing a first order phase transitions as is demonstrated on the example of the scalar field theory with a Coleman-Weinberg potential.Comment: 9 pages, 7 figures, final version, to appear in JHE

    Succinct Data Structures for Families of Interval Graphs

    Full text link
    We consider the problem of designing succinct data structures for interval graphs with nn vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time in the Θ(log⁑n)\Theta(\log n)-bit word RAM model. The degree query reports the number of incident edges to a given vertex in constant time, the adjacency query returns true if there is an edge between two vertices in constant time, the neighborhood query reports the set of all adjacent vertices in time proportional to the degree of the queried vertex, and the shortest path query returns a shortest path in time proportional to its length, thus the running times of these queries are optimal. Towards showing succinctness, we first show that at least nlog⁑nβˆ’2nlog⁑log⁑nβˆ’O(n)n\log{n} - 2n\log\log n - O(n) bits are necessary to represent any unlabeled interval graph GG with nn vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size nlog⁑n+O(n)n\log{n} +O(n) bits while supporting not only the aforementioned queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on the input interval graph efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and k-improper interval graphs, and circular-arc graphs, and design succinct/compact data structures for these graph classes as well along with supporting queries on them efficiently
    • …
    corecore