155 research outputs found

    Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing.

    Get PDF
    Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice

    Enzymatic Shaving of the Tegument Surface of Live Schistosomes for Proteomic Analysis: A Rational Approach to Select Vaccine Candidates

    Get PDF
    Adult schistosome parasites can reside in the host bloodstream for decades surrounded by components of the immune system. It was originally proposed that their survival depended on the secretion of an inert bilayer, the membranocalyx, to protect the underlying plasma membrane from attack. We have investigated whether any proteins were exposed on the surface of live worms using incubation with selected hydrolases, in combination with mass spectrometry to identify released proteins. We show that a small number of parasite proteins are accessible to the enzymes and so could represent constituents of the membranocalyx. We also identified several proteins acquired by the parasite on contact with host cells. In addition, components of the cytolytic complement pathway were detected, but these appeared not to harm the worm, indicating that some of its own surface proteins could inhibit the lytic pathway. We suggest that, collectively, the ‘superficial’ parasite proteins may provide good candidates for a schistosome vaccine

    Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?

    Get PDF
    The laboratory mouse has been widely used to test the efficacy of schistosome vaccines and a long list of candidates has emerged from this work, many of them abundant internal proteins. These antigens do not have an additive effect when co-administered, or delivered as SWAP homogenate, a quarter of which comprises multiple candidates; the observed protection has an apparent ceiling of 40–50 %. We contend that the low level of maturation of penetrating cercariae (~32 % for Schistosoma mansoni) is a major limitation of the model since 68/100 parasites fail to mature in naïve mice due to natural causes. The pulmonary capillary bed is the obstacle encountered by schistosomula en route to the portal system. The fragility of pulmonary capillaries and their susceptibility to a cytokine-induced vascular leak syndrome have been documented. During lung transit schistosomula burst into the alveolar spaces, and possess only a limited capacity to re-enter tissues. The acquired immunity elicited by the radiation attenuated (RA) cercarial vaccine relies on a pulmonary inflammatory response, involving cytokines such as IFNγ and TNFα, to deflect additional parasites into the alveoli. A principal difference between antigen vaccine protocols and the RA vaccine is the short interval between the last antigen boost and cercarial challenge of mice (often two weeks). Thus, after antigen vaccination, challenge parasites will reach the lungs when both activated T cells and cytokine levels are maximal in the circulation. We propose that “protection” in this situation is the result of physiological effects on the pulmonary blood vessels, increasing the proportion of parasites that enter the alveoli. This hypothesis will explain why internal antigens, which are unlikely to interact with the immune response in a living schistosomulum, plus a variety of heterologous proteins, can reduce the level of maturation in a non-antigen-specific way. These proteins are “successful” precisely because they have not been selected for immunological silence. The same arguments apply to vaccine experiments with S. japonicum in the mouse model; this schistosome species seems a more robust parasite, even harder to eliminate by acquired immune responses. We propose a number of ways in which our conclusions may be tested

    Applying diagnosis and pharmacy-based risk models to predict pharmacy use in Aragon, Spain: The impact of a local calibration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the financing of a national health system, where pharmaceutical spending is one of the main cost containment targets, predicting pharmacy costs for individuals and populations is essential for budget planning and care management. Although most efforts have focused on risk adjustment applying diagnostic data, the reliability of this information source has been questioned in the primary care setting. We sought to assess the usefulness of incorporating pharmacy data into claims-based predictive models (PMs). Developed primarily for the U.S. health care setting, a secondary objective was to evaluate the benefit of a local calibration in order to adapt the PMs to the Spanish health care system.</p> <p>Methods</p> <p>The population was drawn from patients within the primary care setting of Aragon, Spain (n = 84,152). Diagnostic, medication and prior cost data were used to develop PMs based on the Johns Hopkins ACG methodology. Model performance was assessed through r-squared statistics and predictive ratios. The capacity to identify future high-cost patients was examined through c-statistic, sensitivity and specificity parameters.</p> <p>Results</p> <p>The PMs based on pharmacy data had a higher capacity to predict future pharmacy expenses and to identify potential high-cost patients than the models based on diagnostic data alone and a capacity almost as high as that of the combined diagnosis-pharmacy-based PM. PMs provided considerably better predictions when calibrated to Spanish data.</p> <p>Conclusion</p> <p>Understandably, pharmacy spending is more predictable using pharmacy-based risk markers compared with diagnosis-based risk markers. Pharmacy-based PMs can assist plan administrators and medical directors in planning the health budget and identifying high-cost-risk patients amenable to care management programs.</p

    Probiotic-Derived Polyphosphate Enhances the Epithelial Barrier Function and Maintains Intestinal Homeostasis through Integrin–p38 MAPK Pathway

    Get PDF
    Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P), a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg) improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK

    Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle

    Get PDF
    The airways and the urinary bladder are both hollow organs serving very different functions, i.e. air flow and urine storage, respectively. While the autonomic nervous system seems to play only a minor if any role in the physiological regulation of airway tone during normal breathing, it is important in the physiological regulation of bladder smooth muscle contraction and relaxation. While both tissues share a greater expression of M2 than of M3 muscarinic receptors, smooth muscle contraction in both is largely mediated by the smaller M3 population apparently involving phospholipase C activation to only a minor if any extent. While smooth muscle in both tissues can be relaxed by β-adrenoceptor stimulation, this primarily involves β2-adrenoceptors in human airways and β3-adrenoceptors in human bladder. Despite activation of adenylyl cyclase by either subtype, cyclic adenosine monophosphate plays only a minor role in bladder relaxation by β-agonists; an important but not exclusive function is known in airway relaxation. While airway β2-adrenoceptors are sensitive to agonist-induced desensitization, β3-adrenoceptors are generally considered to exhibit much less if any sensitivity to desensitization. Gene polymorphisms exist in the genes of both β2- and β3-adrenoceptors. Despite being not fully conclusive, the available data suggest some role of β2-adrenoceptor polymorphisms in airway function and its treatment by receptor agonists, whereas the available data on β3-adrenoceptor polymorphisms and bladder function are too limited to allow robust interpretation. We conclude that the distinct functions of airways and urinary bladder are reflected in a differential regulation by the autonomic nervous system. Studying these differences may be informative for a better understanding of each tissue

    The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers.

    Get PDF
    Antibody affinity maturation occurs in germinal centers (GCs), where B cells cycle between the light zone (LZ) and the dark zone. In the LZ, GC B cells bearing immunoglobulins with the highest affinity for antigen receive positive selection signals from helper T cells, which promotes their rapid proliferation. Here we found that the RNA-binding protein PTBP1 was needed for the progression of GC B cells through late S phase of the cell cycle and for affinity maturation. PTBP1 was required for proper expression of the c-MYC-dependent gene program induced in GC B cells receiving T cell help and directly regulated the alternative splicing and abundance of transcripts that are increased during positive selection to promote proliferation

    Taxonomic and Geographic Bias in Conservation Biology Research: A Systematic Review of Wildfowl Demography Studies.

    Get PDF
    Demographic data are important to wildlife managers to gauge population health, to allow populations to be utilised sustainably, and to inform conservation efforts. We analysed published demographic data on the world's wildfowl to examine taxonomic and geographic biases in study, and to identify gaps in knowledge. Wildfowl (order: Anseriformes) are a comparatively well studied bird group which includes 169 species of duck, goose and swan. In all, 1,586 wildfowl research papers published between 1911 and 2010 were found using Web of Knowledge (WoK) and Google Scholar. Over half of the research output involved just 15 species from seven genera. Research output was strongly biased towards 'high income' countries, common wildfowl species, and measures of productivity, rather than survival and movement patterns. There were significantly fewer demographic data for the world's 31 threatened wildfowl species than for non-threatened species. Since 1994, the volume of demographic work on threatened species has increased more than for non-threatened species, but still makes up only 2.7% of total research output. As an aid to research prioritisation, a metric was created to reflect demographic knowledge gaps for each species related to research output for the species, its threat status, and availability of potentially useful surrogate data from congeneric species. According to the metric, the 25 highest priority species include thirteen threatened taxa and nine species each from Asia and South America, and six from Africa
    corecore