137 research outputs found

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: A collaborative multi-modal study

    Full text link
    Mouse models of Alzheimer s disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-Adults (6 months (m)) to mid-(12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-Type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (A) and [18F]ASEM (7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, A, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected A accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. A plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to A plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the A plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-Acetyl-Aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and-31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD

    The RNA Editing Pattern of cox2 mRNA Is Affected by Point Mutations in Plant Mitochondria

    Get PDF
    The mitochondrial transcriptome from land plants undergoes hundreds of specific C-to-U changes by RNA editing. These events are important since most of them occur in the coding region of mRNAs. One challenging question is to understand the mechanism of recognition of a selected C residue (editing sites) on the transcript. It has been reported that a short region surrounding the target C forms the cis-recognition elements, but individual residues on it do not play similar roles for the different editing sites. Here, we studied the role of the −1 and +1 nucleotide in wheat cox2 editing site recognition using an in organello approach. We found that four different recognition patterns can be distinguished: (a) +1 dependency, (b) −1 dependency, (c) +1/−1 dependency, and (d) no dependency on nearest neighbor residues. A striking observation was that whereas a 23 nt cis region is necessary for editing, some mutants affect the editing efficiency of unmodified distant sites. As a rule, mutations or pre-edited variants of the transcript have an impact on the complete set of editing targets. When some Cs were changed into Us, the remaining editing sites presented a higher efficiency of C-to-U conversion than in wild type mRNA. Our data suggest that the complex response observed for cox2 mRNA may be a consequence of the fate of the transcript during mitochondrial gene expression

    Polymers for Improving the In Vivo Transduction Efficiency of AAV2 Vectors

    Get PDF
    Background: Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency. Methodology: Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2. Conclusions: Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins

    Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis

    Get PDF
    The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10[superscript −/−] mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10[superscript −/−] mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.National Institutes of Health (U.S.) (Grant NIH P01-CA26731)National Institutes of Health (U.S.) (Grant NIH P30ES0026731)National Institutes of Health (U.S.) (Grant NIH R01-OD011141

    Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using 'omics' technologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic diversity among wild accessions and cultivars of common bean (<it>Phaseolus vulgaris </it>L.) has been characterized using plant morphology, seed protein allozymes, random amplified polymorphic DNA, restriction fragment length polymorphisms, DNA sequence analysis, chloroplast DNA, and microsatellite markers. Yet, little is known about whether these traits, which distinguish among genetically distinct types of common bean, can be evaluated using omics technologies.</p> <p>Results</p> <p>Three 'omics' approaches: transcriptomics, proteomics, and metabolomics were used to qualitatively evaluate the diversity of common bean from two Centers of Domestication (COD). All three approaches were able to classify common bean according to their COD using unsupervised analyses; these findings are consistent with the hypothesis that differences exist in gene transcription, protein expression, and synthesis and metabolism of small molecules among common bean cultivars representative of different COD. Metabolomic analyses of multiple cultivars within two common bean gene pools revealed cultivar differences in small molecules that were of sufficient magnitude to allow identification of unique cultivar fingerprints.</p> <p>Conclusions</p> <p>Given the high-throughput and low cost of each of these 'omics' platforms, significant opportunities exist for their use in the rapid identification of traits of agronomic and nutritional importance as well as to characterize genetic diversity.</p

    Systematic review and meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke: an update

    Get PDF
    Interleukin-1 receptor antagonist (IL-1 RA) is an anti-inflammatory protein used clinically to treat rheumatoid arthritis and is considered a promising candidate therapy for stroke. Here, we sought to update the existing systematic review and meta-analysis of IL-1 RA in models of ischaemic stroke, published in 2009, to assess efficacy, the range of circumstances in which efficacy has been tested and whether the data appear to be confounded due to reported study quality and publication bias. We included 25 sources of data, 11 of which were additional to the original review. Overall, IL-1 RA reduced infarct volume by 36.2 % (95 % confidence interval 31.6–40.7, n = 76 comparisons from 1283 animals). Assessments for publication bias suggest 30 theoretically missing studies which reduce efficacy to 21.9 % (17.3–26.4). Efficacy was higher where IL-1 RA was administered directly into the ventricles rather than peripherally, and studies not reporting allocation concealment during the induction of ischaemia reported larger treatment effects. The preclinical data supporting IL-1 RA as a candidate therapy for ischaemic stroke have improved. The reporting of measures to reduce the risk of bias has improved substantially in this update, and studies now include the use of animals with relevant co-morbidities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12975-016-0489-z) contains supplementary material, which is available to authorized users

    A Commensal Helicobacter sp. of the Rodent Intestinal Flora Activates TLR2 and NOD1 Responses in Epithelial Cells

    Get PDF
    Helicobacter spp. represent a proportionately small but significant component of the normal intestinal microflora of animal hosts. Several of these intestinal Helicobacter spp. are known to induce colitis in mouse models, yet the mechanisms by which these bacteria induce intestinal inflammation are poorly understood. To address this question, we performed in vitro co-culture experiments with mouse and human epithelial cell lines stimulated with a selection of Helicobacter spp., including known pathogenic species as well as ones for which the pathogenic potential is less clear. Strikingly, a member of the normal microflora of rodents, Helicobacter muridarum, was found to be a particularly strong inducer of CXC chemokine (Cxcl1/KC, Cxcl2/MIP-2) responses in a murine intestinal epithelial cell line. Time-course studies revealed a biphasic pattern of chemokine responses in these cells, with H. muridarum lipopolysaccharide (LPS) mediating early (24–48 h) responses and live bacteria seeming to provoke later (48–72 h) responses. H. muridarum LPS per se was shown to induce CXC chemokine production in HEK293 cells stably expressing Toll-like receptor 2 (TLR2), but not in those expressing TLR4. In contrast, live H. muridarum bacteria were able to induce NF-κB reporter activity and CXC chemokine responses in TLR2–deficient HEK293 and in AGS epithelial cells. These responses were attenuated by transient transfection with a dominant negative construct to NOD1, and by stable expression of NOD1 siRNA, respectively. Thus, the data suggest that both TLR2 and NOD1 may be involved in innate immune sensing of H. muridarum by epithelial cells. This work identifies H. muridarum as a commensal bacterium with pathogenic potential and underscores the potential roles of ill-defined members of the normal flora in the initiation of inflammation in animal hosts. We suggest that H. muridarum may act as a confounding factor in colitis model studies in rodents

    Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance

    Get PDF
    M13 universal non-homologous oligonucleotide tails incorporated into universal primers have been shown to improve amplification and sequencing performance. However, a few protocols use these tails in the field of food inspection. In this study, two types of M13 tails (by Steffens and Messing) were selected to assess their benefits using universal cytochrome oxidase subunit I (COI) and 16S ribosomal RNA gene (16SrRNA) primers in standard procedures. The primer characteristics were tested in silico. Then, using 20 DNA samples of edible species (birds, fishes, and mammals), their performance during PCR amplification (band recovery and intensity) and sequencing (sequence recovery, length, and Phred score) was assessed and compared. While 16SrRNA tailed and non-tailed primers performed similarly, differences were found for COI primers. Messing’s tails negatively affected the reaction outputs, while Steffens’ tails significantly improved the band intensity and the length of the final contigs based on the individual bidirectional read sequence. This different performance could be related to a destabilization effect of certain tails on primers with unfavorable mismatches on the annealing region. Even though our results cannot be generalized because the tail performances are strictly dependent on laboratory conditions, they show that appropriate tails can improve the overall throughput of the analysis, supporting food traceabilit

    Malignant mesothelioma

    Get PDF
    Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10–20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting features are those of chest pain and dyspnoea. Breathlessness due to a pleural effusion without chest pain is reported in about 30% of patients. A chest wall mass, weight loss, sweating, abdominal pain and ascites (due to peritoneal involvement) are less common presentations. Mesothelioma is directly attributable to occupational asbestos exposure with a history of exposure in over 90% of cases. There is also evidence that mesothelioma may result from both para-occupational exposure and non-occupational "environmental" exposure. Idiopathic or spontaneous mesothelioma can also occur in the absence of any exposure to asbestos, with a spontaneous rate in humans of around one per million. A combination of accurate exposure history, along with examination radiology and pathology are essential to make the diagnosis. Distinguishing malignant from benign pleural disease can be challenging. The most helpful CT findings suggesting malignant pleural disease are 1) a circumferential pleural rind, 2) nodular pleural thickening, 3) pleural thickening of > 1 cm and 4) mediastinal pleural involvement. Involvement of a multidisciplinary team is recommended to ensure prompt and appropriate management, using a framework of radiotherapy, chemotherapy, surgery and symptom palliation with end of life care. Compensation issues must also be considered. Life expectancy in malignant mesothelioma is poor, with a median survival of about one year following diagnosis
    corecore