68 research outputs found

    REFERQUAL: A pilot study of a new service quality assessment instrument in the GP Exercise Referral scheme setting

    Get PDF
    Background The development of an instrument accurately assessing service quality in the GP Exercise Referral Scheme (ERS) industry could potentially inform scheme organisers of the factors that affect adherence rates leading to the implementation of strategic interventions aimed at reducing client drop-out. Methods A modified version of the SERVQUAL instrument was designed for use in the ERS setting and subsequently piloted amongst 27 ERS clients. Results Test re-test correlations were calculated via Pearson's 'r' or Spearman's 'rho', depending on whether the variables were Normally Distributed, to show a significant (mean r = 0.957, SD = 0.02, p < 0.05; mean rho = 0.934, SD = 0.03, p < 0.05) relationship between all items within the questionnaire. In addition, satisfactory internal consistency was demonstrated via Cronbach's 'Ξ±'. Furthermore, clients responded favourably towards the usability, wording and applicability of the instrument's items. Conclusion REFERQUAL is considered to represent promise as a suitable tool for future evaluation of service quality within the ERS community. Future research should further assess the validity and reliability of this instrument through the use of a confirmatory factor analysis to scrutinise the proposed dimensional structure

    A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling

    Get PDF
    Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS) have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1) diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secretion. We reasoned that new regulators of IIS strength might be identified in screens based on the L1 diapause and the asna-1 phenotype. Eighty- six genes were selected for analysis by virtue of their predicted interaction with ASNA-1 and screened for asna-1-like larval arrest. ykt-6, mrps-2, mrps-10 and mrpl-43 were identified as genes which, when inactivated, caused larval arrest without any associated feeding defects. Several tests indicated that IIS strength was weaker and that insulin secretion was defective in these animals. This study highlights the role of the Golgi network and the mitochondria in insulin secretion and provides a new list of genes that modulate IIS in C. elegans

    Galaxies appear simpler than expected

    Full text link
    Galaxies are complex systems the evolution of which apparently results from the interplay of dynamics, star formation, chemical enrichment, and feedback from supernova explosions and supermassive black holes. The hierarchical theory of galaxy formation holds that galaxies are assembled from smaller pieces, through numerous mergers of cold dark matter. The properties of an individual galaxy should be controlled by six independent parameters including mass, angular-momentum, baryon-fraction, age and size, as well as by the accidents of its recent haphazard merger history. Here we report that a sample of galaxies that were first detected through their neutral hydrogen radio-frequency emission, and are thus free of optical selection effects, shows five independent correlations among six independent observables, despite having a wide range of properties. This implies that the structure of these galaxies must be controlled by a single parameter, although we cannot identify this parameter from our dataset. Such a degree of organisation appears to be at odds with hierarchical galaxy formation, a central tenet of the cold dark matter paradigm in cosmology.Comment: 26 pages, 14 figure

    Benchmarking and Analysis of Protein Docking Performance in Rosetta v3.2

    Get PDF
    RosettaDock has been increasingly used in protein docking and design strategies in order to predict the structure of protein-protein interfaces. Here we test capabilities of RosettaDock 3.2, part of the newly developed Rosetta v3.2 modeling suite, against Docking Benchmark 3.0, and compare it with RosettaDock v2.3, the latest version of the previous Rosetta software package. The benchmark contains a diverse set of 116 docking targets including 22 antibody-antigen complexes, 33 enzyme-inhibitor complexes, and 60 β€˜other’ complexes. These targets were further classified by expected docking difficulty into 84 rigid-body targets, 17 medium targets, and 14 difficult targets. We carried out local docking perturbations for each target, using the unbound structures when available, in both RosettaDock v2.3 and v3.2. Overall the performances of RosettaDock v2.3 and v3.2 were similar. RosettaDock v3.2 achieved 56 docking funnels, compared to 49 in v2.3. A breakdown of docking performance by protein complex type shows that RosettaDock v3.2 achieved docking funnels for 63% of antibody-antigen targets, 62% of enzyme-inhibitor targets, and 35% of β€˜other’ targets. In terms of docking difficulty, RosettaDock v3.2 achieved funnels for 58% of rigid-body targets, 30% of medium targets, and 14% of difficult targets. For targets that failed, we carry out additional analyses to identify the cause of failure, which showed that binding-induced backbone conformation changes account for a majority of failures. We also present a bootstrap statistical analysis that quantifies the reliability of the stochastic docking results. Finally, we demonstrate the additional functionality available in RosettaDock v3.2 by incorporating small-molecules and non-protein co-factors in docking of a smaller target set. This study marks the most extensive benchmarking of the RosettaDock module to date and establishes a baseline for future research in protein interface modeling and structure prediction

    A Switch from a Gradient to a Threshold Mode in the Regulation of a Transcriptional Cascade Promotes Robust Execution of Meiosis in Budding Yeast

    Get PDF
    Tight regulation of developmental pathways is of critical importance to all organisms, and is achieved by a transcriptional cascade ensuring the coordinated expression of sets of genes. We aimed to explore whether a strong signal is required to enter and complete a developmental pathway, by using meiosis in budding yeast as a model. We demonstrate that meiosis in budding yeast is insensitive to drastic changes in the levels of its consecutive positive regulators (Ime1, Ime2, and Ndt80). Entry into DNA replication is not correlated with the time of transcription of the early genes that regulate this event. Entry into nuclear division is directly regulated by the time of transcription of the middle genes, as premature transcription of their activator NDT80, leads to a premature entry into the first meiotic division, and loss of coordination between DNA replication and nuclear division. We demonstrate that Cdk1/Cln3 functions as a negative regulator of Ime2, and that ectopic expression of Cln3 delays entry into nuclear division as well as NDT80 transcription. Because Ime2 functions as a positive regulator for premeiotic DNA replication and NDT80 transcription, as well as a negative regulator of Cdk/Cln, we suggest that a double negative feedback loop between Ime2 and Cdk1/Cln3 promotes a bistable switch from the cell cycle to meiosis. Moreover, our results suggest a regulatory mode switch that ensures robust meiosis as the transcription of the early meiosis-specific genes responds in a graded mode to Ime1 levels, whereas that of the middle and late genes as well as initiation of DNA replication, are regulated in a threshold mode

    Eye-Hand Coordination during Dynamic Visuomotor Rotations

    Get PDF
    Background for many technology-driven visuomotor tasks such as tele-surgery, human operators face situations in which the frames of reference for vision and action are misaligned and need to be compensated in order to perform the tasks with the necessary precision. The cognitive mechanisms for the selection of appropriate frames of reference are still not fully understood. This study investigated the effect of changing visual and kinesthetic frames of reference during wrist pointing, simulating activities typical for tele-operations. Methods using a robotic manipulandum, subjects had to perform center-out pointing movements to visual targets presented on a computer screen, by coordinating wrist flexion/extension with abduction/adduction. We compared movements in which the frames of reference were aligned (unperturbed condition) with movements performed under different combinations of visual/kinesthetic dynamic perturbations. The visual frame of reference was centered to the computer screen, while the kinesthetic frame was centered around the wrist joint. Both frames changed their orientation dynamically (angular velocity\u200a=\u200a36\ub0/s) with respect to the head-centered frame of reference (the eyes). Perturbations were either unimodal (visual or kinesthetic), or bimodal (visual+kinesthetic). As expected, pointing performance was best in the unperturbed condition. The spatial pointing error dramatically worsened during both unimodal and most bimodal conditions. However, in the bimodal condition, in which both disturbances were in phase, adaptation was very fast and kinematic performance indicators approached the values of the unperturbed condition. Conclusions this result suggests that subjects learned to exploit an \u201caffordance\u201d made available by the invariant phase relation between the visual and kinesthetic frames. It seems that after detecting such invariance, subjects used the kinesthetic input as an informative signal rather than a disturbance, in order to compensate the visual rotation without going through the lengthy process of building an internal adaptation model. Practical implications are discussed as regards the design of advanced, high-performance man-machine interfaces

    VHA-19 Is Essential in Caenorhabditis elegans Oocytes for Embryogenesis and Is Involved in Trafficking in Oocytes

    Get PDF
    There is an urgent need to develop new drugs against parasitic nematodes, which are a significant burden on human health and agriculture. Information about the function of essential nematode-specific genes provides insight to key nematode-specific processes that could be targeted with drugs. We have characterized the function of a novel, nematode-specific Caenorhabditis elegans protein, VHA-19, and show that VHA-19 is essential in the germline and, specifically, the oocytes, for the completion of embryogenesis. VHA-19 is also involved in trafficking the oocyte receptor RME-2 to the oocyte plasma membrane and is essential for osmoregulation in the embryo, probably because VHA-19 is required for proper eggshell formation via exocytosis of cortical granules or other essential components of the eggshell. VHA-19 may also have a role in cytokinesis, either directly or as an indirect effect of its role in osmoregulation. Critically, VHA-19 is expressed in the excretory cell in both larvae and adults, suggesting that it may have a role in osmoregulation in C. elegans more generally, probably in trafficking or secretion pathways. This is the first time a role for VHA-19 has been described

    Immunity against Ixodes scapularis Salivary Proteins Expressed within 24 Hours of Attachment Thwarts Tick Feeding and Impairs Borrelia Transmission

    Get PDF
    In North America, the black-legged tick, Ixodes scapularis, an obligate haematophagus arthropod, is a vector of several human pathogens including Borrelia burgdorferi, the Lyme disease agent. In this report, we show that the tick salivary gland transcriptome and proteome is dynamic and changes during the process of engorgement. We demonstrate, using a guinea pig model of I. scapularis feeding and B. burgdorferi transmission, that immunity directed against salivary proteins expressed in the first 24 h of tick attachment β€” and not later β€” is sufficient to evoke all the hallmarks of acquired tick-immunity, to thwart tick feeding and also to impair Borrelia transmission. Defining this subset of proteins will promote a mechanistic understanding of novel I. scapularis proteins critical for the initiation of tick feeding and for Borrelia transmission

    Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide

    Get PDF
    Up to two-thirds of stroke survivors experience persistent sensorimotor impairments. Recovery relies on the integrity of spared brain areas to compensate for damaged tissue. Deep grey matter structures play a critical role in the control and regulation of sensorimotor circuits. The goal of this work is to identify associations between volumes of spared subcortical nuclei and sensorimotor behaviour at different timepoints after stroke. We pooled high-resolution T1-weighted MRI brain scans and behavioural data in 828 individuals with unilateral stroke from 28 cohorts worldwide. Cross-sectional analyses using linear mixed-effects models related post-stroke sensorimotor behaviour to non-lesioned subcortical volumes (Bonferroni-corrected, P < 0.004). We tested subacute (≀90 days) and chronic (β‰₯180 days) stroke subgroups separately, with exploratory analyses in early stroke (≀21 days) and across all time. Sub-analyses in chronic stroke were also performed based on class of sensorimotor deficits (impairment, activity limitations) and side of lesioned hemisphere. Worse sensorimotor behaviour was associated with a smaller ipsilesional thalamic volume in both early (n = 179; d = 0.68) and subacute (n = 274, d = 0.46) stroke. In chronic stroke (n = 404), worse sensorimotor behaviour was associated with smaller ipsilesional putamen (d = 0.52) and nucleus accumbens (d = 0.39) volumes, and a larger ipsilesional lateral ventricle (d = -0.42). Worse chronic sensorimotor impairment specifically (measured by the Fugl-Meyer Assessment; n = 256) was associated with smaller ipsilesional putamen (d = 0.72) and larger lateral ventricle (d = -0.41) volumes, while several measures of activity limitations (n = 116) showed no significant relationships. In the full cohort across all time (n = 828), sensorimotor behaviour was associated with the volumes of the ipsilesional nucleus accumbens (d = 0.23), putamen (d = 0.33), thalamus (d = 0.33) and lateral ventricle (d = -0.23). We demonstrate significant relationships between post-stroke sensorimotor behaviour and reduced volumes of deep grey matter structures that were spared by stroke, which differ by time and class of sensorimotor measure. These findings provide additional insight into how different cortico-thalamo-striatal circuits support post-stroke sensorimotor outcomes
    • …
    corecore