927 research outputs found

    Using five-minute bird counts to study magpie (Gymnorhina tibicen) impacts on other birds in New Zealand

    Get PDF
    We used five-minute bird counts to investigate whether introduced Australian magpies (Gymnorhina tibicen) influence the abundance of other birds in rural New Zealand. Over 3 years, magpies were removed from five c. 900-ha study blocks, one in each of Northland, Waikato, Bay of Plenty, Wellington and Southland. Birds were counted in both the treatment blocks and paired non-treatment blocks for the 3 years of removal and also 1 year before. To minimise problems raised elsewhere with index counts we (1) selected treatment blocks and count stations using randomisation procedures, (2) used trained observers who spent equal time in paired treatment and non-treatment blocks, and (3) counted all blocks at the same time of year and only in good weather. On average, 548 magpies were removed from each treatment block each year, with magpie counts reduced by 76% relative to non-treatment blocks. Our results suggest magpies may restrict the movements of some birds (including kererū and tūī) in rural areas, but are less important than pest mammals at limiting population abundance at a landscape scale. We submit that five-minute bird counts were appropriate for our objectives, but that more research to examine their relationship to absolute densities is needed

    Dissipation of vibration in rough contact

    Get PDF
    The relationship which links the normal vibration occurring during the sliding of rough surfaces and the nominal contact area is investigated. Two regimes are found. In the first one, the vibrational level does not depend on the contact area, while in the second one, it is propor- tional to the contact area. A theoretical model is proposed. It is based on the assumption that the vibrational level results from a competition between two processes of vibration damping, the internal damping of the material and the contact damping occurring at the interface

    Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos

    Get PDF
    To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods

    Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Get PDF
    We present a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric radiances in the thermal infrared (TIR) observed by IASI (Infrared Atmospheric Sounding Interferometer) and earth reflectances in the ultraviolet (UV) measured by GOME-2 (Global Ozone Monitoring Experiment-2). Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12 km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov–Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) and KOPRA (Karlsruhe Optimized and Precise Radiative transfer Algorithm) radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyse real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the lowermost troposphere (LMT, from the surface up to 3 km a.s.l., above sea level), in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km a.s.l., they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km a.s.l. are only clearly depicted by the multispectral retrieval (both over land and over ocean). This is achieved by a clear enhancement of sensitivity to ozone in the lowest atmospheric layers. The multispectral sensitivity in the LMT peaks at 2 to 2.5 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km a.s.l. at lowest (above the LMT). The degrees of freedom for the multispectral retrieval increase by 0.1 (40% in relative terms) with respect to IASI only retrievals for the LMT. Validations with ozonesondes (over Europe during summer 2009) show that our synergetic approach for combining IASI (TIR) and GOME-2 (UV) measurements retrieves lowermost tropospheric ozone with a mean bias of 1% and a precision of 16%, when smoothing by the retrieval vertical sensitivity (1% mean bias and 21% precision for direct comparisons)

    Ep-CAM expression in squamous cell carcinoma of the esophagus: a potential therapeutic target and prognostic marker

    Get PDF
    BACKGROUND: To evaluate the expression and test the clinical significance of the epithelial cellular adhesion molecule (Ep-CAM) in esophageal squamous cell carcinoma (SCC) to check the suitability of esophageal SCC patients for Ep-CAM directed targeted therapies. METHODS: The Ep-CAM expression was immunohistochemically investigated in 70 primary esophageal SCCs using the monoclonal antibody Ber-EP4. For the interpretation of the staining results, we used a standardized scoring system ranging from 0 to 3+. The survival analysis was calculated from 53 patients without distant metastasis, with R0 resection and at least 2 months of clinical follow-up. RESULTS: Ep-CAM neo-expression was observed in 79% of the tumors with three expression levels, 1+ (26%), 2+ (11%) and 3+ (41%). Heterogeneous expression was observed at all expression levels. Interestingly, tumors with 3+ Ep-CAM expression conferred a significantly decreased median relapse-free survival period (log rank, p = 0.0001) and median overall survival (log rank, p = 0.0003). Multivariate survival analysis disclosed Ep-CAM 3+ expression as independent prognostic factor. CONCLUSION: Our results suggest Ep-CAM as an attractive molecule for targeted therapy in esophageal SCC. Considering the discontenting results of the current adjuvant concepts for esophageal SCC patients, Ep-CAM might provide a promising target for an adjuvant immunotherapeutic intervention

    Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Get PDF
    We present a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric radiances in the thermal infrared (TIR) observed by IASI (Infrared Atmospheric Sounding Interferometer) and earth reflectances in the ultraviolet (UV) measured by GOME-2 (Global Ozone Monitoring Experiment-2). Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12 km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov–Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) and KOPRA (Karlsruhe Optimized and Precise Radiative transfer Algorithm) radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyse real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the lowermost troposphere (LMT, from the surface up to 3 km a.s.l., above sea level), in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km a.s.l., they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km a.s.l. are only clearly depicted by the multispectral retrieval (both over land and over ocean). This is achieved by a clear enhancement of sensitivity to ozone in the lowest atmospheric layers. The multispectral sensitivity in the LMT peaks at 2 to 2.5 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km a.s.l. at lowest (above the LMT). The degrees of freedom for the multispectral retrieval increase by 0.1 (40%in relative terms) with respect to IASI only retrievals for the LMT. Validations with ozonesondes (over Europe during summer 2009) show that our synergetic approach for combining IASI (TIR) and GOME-2 (UV) measurements retrieves lowermost tropospheric ozone with a mean bias of 1% and a precision of 16 %, when smoothing by the retrieval vertical sensitivity (1% mean bias and 21% precision for direct comparisons)

    Mutational analysis of xenobiotic metabolizing genes (CYP1A1 and GSTP1) in sporadic head and neck cancer patients

    Get PDF
    CYP1A1 is the phase I enzyme that detoxifies the carcinogen or converts it into a more electrophilic form, metabolized by phase II enzymes like GSTP1. These detoxifying genes have been extensively studied in association with head and neck cancer (HNC) in different ethnic groups worldwide. The current study was aimed at screening genetic polymorphisms of genes CYP1A1 and GSTP1 in 388 Pakistani HNC patients and 150 cancer-free healthy controls, using PCR-SSCP. No already known variants of either gene were found, however a novel frameshift mutation due to insertion of T (g.2842_2843insT) was observed in the CYP1A1 gene. A statistically significant number (5.4%) of HNC cases, with the mean age of 51.75 (±15.7) years, presented this frameshift mutation in the conserved domain of CYP1A1. Another novel substitution mutation in was found in the GSTP1 gene, presenting TA instead of AG. The g.2848A > T polymorphism causes a leucine-to-leucine formation, whereas g.2849G > A causes alanine-to-threonine formation at amino acid positions 166 and 167, respectively. These exonic mutations were found in 9.5% of the HNC patients and in none of the controls. In addition, two intronic deletions of C (g.1074delC and g.1466delC) were also found in 11 patients with a mean age of 46.2 (±15.6) years. In conclusion, accumulation of mutations in genes CYP1A1 and GSTP1 appears to be associated with increased risk of developing HNC, suggesting that mutations in these genes may play a role in the etiology of head and neck cancer
    corecore