67 research outputs found

    Gauging the Contribution of X-ray Sources to Reionization Through the Kinetic Sunyaev-Zel'dovich Effect

    Full text link
    Measurements of the kinetic Sunyaev-Zel'dovich (kSZ) effect from instruments such as the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT) will soon put improved constraints on reionization. Popular models assume that UV photons alone are responsible for reionization of the intergalactic medium. We explore the effects of a significant contribution of X-rays to reionization on the kSZ signal. Because X-rays have a large mean free path through the neutral intergalactic medium, they introduce partial ionization in between the sharp-edged bubbles created by UV photons. This smooth ionization component changes the power spectrum of the cosmic microwave background (CMB) temperature anisotropies. We quantify this effect by running semi-numerical simulations of reionization. We test a number of different models of reionization without X-rays that have varying physical parameters, but which are constrained to have similar total optical depths to electron scattering. These are then compared to models with varying levels of contribution to reionization from X-rays. We find that models with more than a 10% contribution from X-rays produce a significantly lower power spectrum of temperature anisotropies than all the UV-only models tested. The expected sensitivity of SPT and ACT may be insufficient to distinguish between our models, however, a non-detection of the kSZ signal from the epoch of reionization could result from the contribution of X-rays. It will be important for future missions with improved sensitivity to consider the impact of X-ray sources on reionization.Comment: 11 pages, 4 figures, modified to reflect updated SPT error bars, submitted to JCA

    Angular 21 cm Power Spectrum of a Scaling Distribution of Cosmic String Wakes

    Full text link
    Cosmic string wakes lead to a large signal in 21 cm redshift maps at redshifts larger than that corresponding to reionization. Here, we compute the angular power spectrum of 21 cm radiation as predicted by a scaling distribution of cosmic strings whose wakes have undergone shock heating.Comment: 13 pages, 6 figures; v2: minor modifications, journal versio

    Magnetic fields and Sunyaev-Zel'dovich effect in galaxy clusters

    Full text link
    In this work we study the contribution of magnetic fields to the Sunyaev Zeldovich (SZ) effect in the intracluster medium. In particular we calculate the SZ angular power spectrum and the central temperature decrement. The effect of magnetic fields is included in the hydrostatic equilibrium equation by splitting the Lorentz force into two terms one being the force due to magnetic pressure which acts outwards and the other being magnetic tension which acts inwards. A perturbative approach is adopted to solve for the gas density profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement of the gas density in the central regions for nearly radial magnetic field configurations. Previous works had considered the force due to magnetic pressure alone which is the case only for a special set of field configurations. However, we see that there exists possible sets of configurations of ICM magnetic fields where the force due to magnetic tension will dominate. Subsequently, this effect is extrapolated for typical field strengths (~ 10 micro G) and scaling arguments are used to estimate the angular power due to secondary anisotropies at cluster scales. In particular we find that it is possible to explain the excess power reported by CMB experiments like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for typical cluster magnetic fields. In addition we also see that the magnetic field effect on the SZ temperature decrement is more pronounced for low mass clusters ( ~ 2 keV). Future SZ detections of low mass clusters at few arc second resolution will be able to probe this effect more precisely. Thus, it will be instructive to explore the implications of this model in greater detail in future works.Comment: 20 pages, 8 figure

    CMB lensing reconstruction biases in cross-correlation with large-scale structure probes

    Get PDF
    The cross-correlation between cosmic microwave background (CMB) gravitational lensing and large-scale structure tracers will be an important cosmological probe in the coming years. Quadratic estimators provide a simple and powerful (if suboptimal) way to reconstruct the CMB lensing potential and are widely used. For Gaussian fields, the cross-correlation of a quadratic-estimator CMB lensing reconstruction with a tracer is exactly unbiased if the power spectra are known and consistent analytic lensing mode response functions are used. However, the bispectrum induced by non-linear large-scale structure growth and post-Born lensing can introduce an additional bias term (NL(3/2)) in the cross-correlation spectrum, similar to the NL(3/2) bias in the auto-spectrum demonstrated in recent works. We give analytic flat-sky results for the cross-correlation bias using approximate models for the post-Born and large-scale structure cross-bispectra, and compare with N-body simulation results using ray-tracing techniques. We show that the bias can be at the 5–15% level in all large-scale structure cross-correlations using small-scale CMB temperature lensing reconstruction, but is substantially reduced using polarization-based lensing estimators or simple foreground-projected temperature estimators. The relative magnitude of these effects is almost three times higher than in the CMB lensing auto-correlation, but is small enough that it can be modelled to sufficient precision using simple analytic models. We show that NL(3/2) effects in cross-correlation will be detected with high significance when using data of future surveys and could affect systematic effects marginalization in cosmic shear measurements mimicking galaxy intrinsic alignment

    The 21 cm Signature of Cosmic String Wakes

    Full text link
    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1=30z + 1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at zi+1=103z_i + 1 = 10^3, then at a redshift of z+1=30z + 1 = 30 the critical value of the string tension μ\mu is Gμ=6×107G \mu = 6 \times 10^{-7}, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry.Comment: 11 pages, 4 figures; a couple of comments added in the discussion sectio

    Textures and Semi-Local Strings in SUSY Hybrid Inflation

    Full text link
    Global topological defects may account for the large cold spot observed in the Cosmic Microwave Background. We explore possibilities of constructing models of supersymmetric F-term hybrid inflation, where the waterfall fields are globally SU(2)-symmetric. In contrast to the case where SU(2) is gauged, there arise Goldstone bosons and additional moduli, which are lifted only by masses of soft-supersymmetry breaking scale. The model predicts the existence of global textures, which can become semi-local strings if the waterfall fields are gauged under U(1)_X. Gravitino overproduction can be avoided if reheating proceeds via the light SU(2)-modes or right-handed sneutrinos. For values of the inflaton- waterfall coupling >=10^-4, the symmetry breaking scale imposed by normalisation of the power spectrum generated from inflation coincides with the energy scale required to explain the most prominent of the cold spots. In this case, the spectrum of density fluctuations is close to scale-invariant which can be reconciled with measurements of the power spectrum by the inclusion of the sub-dominant component due to the topological defects.Comment: 29 page

    Cosmological effects of scalar-photon couplings: dark energy and varying-α models

    Get PDF
    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temper- ature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation

    Sensitivity and Insensitivity of Galaxy Cluster Surveys to New Physics

    Full text link
    We study the implications and limitations of galaxy cluster surveys for constraining models of particle physics and gravity beyond the Standard Model. Flux limited cluster counts probe the history of large scale structure formation in the universe, and as such provide useful constraints on cosmological parameters. As a result of uncertainties in some aspects of cluster dynamics, cluster surveys are currently more useful for analyzing physics that would affect the formation of structure than physics that would modify the appearance of clusters. As an example we consider the Lambda-CDM cosmology and dimming mechanisms, such as photon-axion mixing.Comment: 24 pages, 8 eps figures. References added, discussion of scatter in relations between cluster observables lengthene

    Brane inflation and the WMAP data: a Bayesian analysis

    Get PDF
    The Wilkinson Microwave Anisotropy Probe (WMAP) constraints on string inspired ''brane inflation'' are investigated. Here, the inflaton field is interpreted as the distance between two branes placed in a flux-enriched background geometry and has a Dirac-Born-Infeld (DBI) kinetic term. Our method relies on an exact numerical integration of the inflationary power spectra coupled to a Markov-Chain Monte-Carlo exploration of the parameter space. This analysis is valid for any perturbative value of the string coupling constant and of the string length, and includes a phenomenological modelling of the reheating era to describe the post-inflationary evolution. It is found that the data favour a scenario where inflation stops by violation of the slow-roll conditions well before brane annihilation, rather than by tachyonic instability. Concerning the background geometry, it is established that log(v) > -10 at 95% confidence level (CL), where "v" is the dimensionless ratio of the five-dimensional sub-manifold at the base of the six-dimensional warped conifold geometry to the volume of the unit five-sphere. The reheating energy scale remains poorly constrained, Treh > 20 GeV at 95% CL, for an extreme equation of state (wreh ~ -1/3) only. Assuming the string length is known, the favoured values of the string coupling and of the Ramond-Ramond total background charge appear to be correlated. Finally, the stochastic regime (without and with volume effects) is studied using a perturbative treatment of the Langevin equation. The validity of such an approximate scheme is discussed and shown to be too limited for a full characterisation of the quantum effects.Comment: 65 pages, 15 figures, uses iopart. Shortened version, updated references. Matches publication up to appendix B kept on the arXi

    The South Pole Telescope

    Full text link
    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over approximately 4000 degrees for galaxy clusters using the Sunyaev-Zel'dovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.Comment: Written prior to SPIE conference, June 21-25, 2004. 19 pages, 13 figures. Also available (with higher resolution figures) at http://spt.uchicago.edu
    corecore