15 research outputs found

    Gravitational lensing at milliarcsecond angular resolution

    Get PDF

    Gravitational lensing at milliarcsecond angular resolution

    Get PDF
    Gravitational lensing is a powerful tool for studying the mass content in distant galaxies, but also for performing a detailed study of high-redshift sources. In this thesis, we use milliarcsecond angular resolution observations of radio-loud gravitationally lensed sources to investigate both the properties of lensing galaxies and background sources. We present high-resolution global Very Long Baseline Interferometric (VLBI) observations of the gravitationally lensed radio source MG J0751+2716 (at z = 3.2), that shows evidence of both compact and extended structure (core-jet morphology) across several gravitational arcs. These data provide a wealth of observational constraints that are used to determine the inner (baryonic and dark matter) mass profile of a group of galaxies and also investigate the smoothness of the dark matter distribution on mas-scales. By complementing spectral line radio observations with optical and near-infrared imaging at high angular resolution, in the second chapter we investigate the cold molecular gas, stars and dust content in two high redshift galaxies (MG J0751+2716 and JVAS B1938+666). Moreover, by comparing two observations at milliarcsecond angular resolution separated by 15 years, we find evidence for proper motions observed for the first time in the gravitational lensing system MG B2016+112. The analysis of these data can constrain the formation model for super-massive black holes. Finally, we present a new pilot gravitational lens search in the VLBI survey mJIVE-20 in perspective of future surveys with the next generation of radio interferometers

    Gravitational lensing at milliarcsecond angular resolution

    Get PDF

    A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution

    Get PDF
    We present a new gravitational lens modelling technique designed to model high-resolution interferometric observations with large numbers of visibilities without the need to pre-average the data in time or frequency. We demonstrate the accuracy of the method using validation tests on mock observations. Using small data sets with ∼103\sim 10^3 visibilities, we first compare our approach with the more traditional direct Fourier transform (DFT) implementation and direct linear solver. Our tests indicate that our source inversion is indistinguishable from that of the DFT. Our method also infers lens parameters to within 1 to 2 per cent of both the ground truth and DFT, given sufficiently high signal-to-noise ratio (SNR). When the SNR is as low as 5, both approaches lead to errors of several tens of per cent in the lens parameters and a severely disrupted source structure, indicating that this is an issue related to the data quality rather than the modelling technique of choice. We then analyze a large data set with ∼108\sim 10^8 visibilities and a SNR matching real global Very Long Baseline Interferometry observations of the gravitational lens system MG J0751+2716. The size of the data is such that it cannot be modelled with traditional implementations. Using our novel technique, we find that we can infer the lens parameters and the source brightness distribution, respectively, with an RMS error of 0.25 and 0.97 per cent relative to the ground truth.Comment: Submitted to MNRA

    A lensed radio jet at milli-arcsecond resolution II: Constraints on fuzzy dark matter from an extended gravitational arc

    Get PDF
    Using a single gravitational lens system observed at ≲5\lesssim5 milli-arcsecond resolution with very long baseline interferometry (VLBI), we place a lower bound on the mass of the fuzzy dark matter (FDM) particle, ruling out mχ≤4.4×10−21 eVm_\chi \leq 4.4\times10^{-21}~\mathrm{eV} with a 20:1 posterior odds ratio relative to a smooth lens model. We generalize our result to non-scalar and multiple-field models, such as vector FDM, with mχ,vec>1.4×10−21 eVm_{\chi,\mathrm{vec}} > 1.4 \times 10^{-21}~\mathrm{eV}. Due to the extended source structure and high angular resolution of the observation, our analysis is directly sensitive to the presence of granule structures in the main dark matter halo of the lens, which is the most generic prediction of FDM theories. A model based on well-understood physics of ultra-light dark matter fields in a gravitational potential well makes our result robust to a wide range of assumed dark matter fractions and velocity dispersions in the lens galaxy. Our result is competitive with other lower bounds on mχm_\chi from past analyses, which rely on intermediate modelling of structure formation and/or baryonic effects. Higher resolution observations taken at 10 to 100 GHz could improve our constraints by up to 2 orders of magnitude in the future.Comment: 5 pages, 2 figures. Accepted in MNRAS Letter

    Minute-timescale Variability in the X-ray Emission of the Highest Redshift Blazar

    Get PDF
    We report on two Chandra observations of the quasar PSO J0309+27, the most distant blazar observed so far (z = 6.1), performed eight months apart, in 2020 March and November. Previous Swift-XRT observations showed that this object is one of the brightest X-ray sources beyond redshift 6.0 ever observed so far. This new dataset confirmed the high flux level and unveiled a spectral change that occurred on a very short timescale (250 s rest frame), caused by a significant softening of the emission spectrum. This kind of spectral variability, on such a short interval, has never been reported in the X-ray emission of a flat-spectrum radio quasar. A possible explanation for this is given by the emission produced by the inverse Compton scatter of the quasar UV photons by the cold electrons present in a fast shell moving along the jet. Although this bulk Comptonization emission should be an unavoidable consequence of the standard leptonic jet model, this would be the first time that it has been observed

    A Highly Magnified Gravitationally Lensed Red QSO at z = 2.5 with a Significant Flux Ratio Anomaly

    Get PDF
    We present the discovery of a gravitationally lensed dust-reddened QSO at z = 2.517, identified in a survey for QSOs by infrared selection. Hubble Space Telescope imaging reveals a quadruply lensed system in a cusp configuration, with a maximum image separation of ~1.8\arcsec. We find that compared to the central image of the cusp, the neighboring brightest image is anomalous by a factor of ~ 7 - 10, which is the largest flux anomaly measured to date in a lensed QSO. Incorporating high-resolution Jansky Very Large Array radio imaging and sub-mm imaging with the Atacama Large (sub-)Millimetre Array, we conclude that a low-mass perturber is the most likely explanation for the anomaly. The optical through near-infrared spectrum reveals that the QSO is moderately reddened with E(B - V) = 0.7 - 0.9. We see an upturn in the ultraviolet spectrum due to ~ 1% of the intrinsic emission being leaked back into the line of sight, which suggests that the reddening is intrinsic and not due to the lens. The QSO may have an Eddington ratio as high as L/L_Edd ~ 0.2. Consistent with previous red QSO samples, this source exhibits outflows in its spectrum as well as morphological properties suggestive of it being in a merger-driven transitional phase. We find a host-galaxy stellar mass of log M_*/M_Sun = 11.4, which is higher than the local M_BH vs. M_* relation, but consistent with other high redshift QSOs. When de-magnified, this QSO is at the knee of the luminosity function, allowing for the detailed study of a more typical moderate-luminosity infrared-selected QSO at high redshift.Comment: Accepted for publication in ApJ; 29 pages, 18 figures, 8 tables. arXiv admin note: text overlap with arXiv:1807.0543

    Radio follow-up of the gamma-ray flaring gravitational lens B0218+357

    No full text
    B0218+357 è un blazar soggetto al lensing che si trova a z=0.944. Questo sistema consiste in due componenti compatte (A e B) e un anello di Einstein. Recentemente è stato associato ad una sorgente gamma soggetta a burst osservata con il satellite Fermi-LAT. Questo blazar ha mostrato una forte variabilità in banda γ da agosto a settembre del 2012. Gli episodi di variabilità osservati hanno consentito di misurare per la prima volta in banda gamma il ritardo temporale previsto dalla teoria del lensing gravitazionale. Le osservazioni in banda gamma sono state seguite da un programma di monitoring con il Very Long Baseline Array (VLBA) in banda radio con lo scopo di verificare l’esistenza di una correlazione tra l’emissione nelle due bande. In questa Tesi tali osservazioni radio sono state analizzate con lo scopo di studiare la variabilità di B0218+357 e, quindi, attestare la connessione tra l’emissione alle alte energie e quella in banda radio. L’obiettivo principale di questo lavoro di Tesi è quello di studiare l’evoluzione della densità di flusso, dell’indice spettrale e della morfologia delle immagini A e B e delle loro sottocomponenti. I dati analizzati sono stati ottenuti con l’interferometro VLBA a tre frequenze di osser- vazione: 2.3, 8.4 GHz (4 epoche con osservazioni simultanee alle due frequenze) e 22 GHz (16 epoche). Le osservazioni hanno coperto un periodo di circa due mesi, subito successivo al flare in banda gamma. La riduzione dei dati è stata effettuata con il pacchetto AIPS. Dall’analisi delle immagini, nella componente B è possibile riconoscere la tipica struttura nucleo-getto chiaramente a tutte e tre le frequenze, invece nella componente A questa struttura è identificabile solo a 22 GHz. A 2.3 e 8.4 GHz la risoluzione non è sufficiente a risolvere nucleo e getto della componente A e l’emissione diffusa risulta dominante. Utilizzando il metodo dello stacking sulle immagini a 2.3 GHz, è stato possibile rivelare le parti più brillanti dell’Einstein ring associato a questa sorgente. Questo è stato possibile poiché la sorgente non ha mostrato alcun segno di variabilità significativa né di struttura né di flusso nelle componenti. Quindi dall’analisi delle curve di luce delle due componenti A e B non è emersa una variabilità significativa chiaramente associabile al flare osservato in banda gamma. Per verificare questo risultato, le curve di luce ottenute sono state confrontate con le osservazioni del radio telescopio OVRO (15 GHz) nel periodo corrispondente alle nostre osservazioni. La curva di luce OVRO è risultata in pieno accordo con le curve di luce ottenute durante questo lavoro di tesi e ha confermato che B0218+257 non ha mostrato un’importante attività radio nel periodo delle osservazioni VLBA. In definitiva, la mancanza di variabilità radio associata a quella osservata nei raggi gamma può essere dovuta al fatto che la regione in cui si è originato il flare gamma è otticamente spessa alle lunghezze d’onda radio, oppure non esiste una precisa correlazione tra le due emissioni, rimanendo quindi un problema aperto da investigare

    Constraining VLBI−optical offsets in high redshift galaxies using strong gravitational lensing

    No full text
    We present a multi-wavelength analysis of two highly magnified strong gravitationally lensed galaxies, CLASS B0712+472 and CLASS B1608+656, at redshifts 1.341.34 and 1.3941.394, respectively, using new VLBI and archival HST observations. We reconstruct the positions of the radio and optical emissions with their uncertainties using Monte Carlo sampling. We find that in CLASS B0712+472 the optical and radio emissions are co-spatial within 2±52\pm5 mas (17±4217\pm 42 pc at redshift of 1.34). But, in CLASS B1608+656, we reconstruct an optical-radio offset of 25±1625\pm16 mas (214±137214\pm137 pc at redshift of 1.394), the smallest offset measured for an AGN at such high redshift. The spectral features indicate that CLASS B1608+656 is a post-merger galaxy, which, in combination with the optical-VLBI offset reported here, makes CLASS B1608+656 a promising candidate for a high-zz offset-AGN. Furthermore, the milliarcsecond angular resolution of the VLBI observations combined with the precise lens models allow us to spatially locate the radio emission at 0.050.05 mas precision (0.40.4 pc) in CLASS B0712+472, and 0.0090.009 mas precision (0.080.08 pc) in CLASS B1608+656. The search for optical-radio offsets in high redshift galaxies will be eased by the upcoming synoptic all-sky surveys, including E-ELT and SKA, which are expected to find ∼105\sim 10^5 strongly lensed galaxies, opening an era of large strong lensing samples observed at high angular resolution.Comment: 16 pages, 7 figures; accepted for publication in MNRA
    corecore