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Abstract
We present a novel pilot search for gravitational lenses in the mJIVE–20 survey,
which observed 24 903 radio sources selected from FIRST with the VLBA at an
angular resolution of 5 mas. We have taken the visibility data for an initial 3 640

sources that were detected by the mJIVE–20 observations and re-mapped them to
make wide-field images, selecting fourteen sources that had multiple components sep-
arated by ≥ 100 mas, with a flux-ratio of ≤ 15:1 and a surface brightness consistent
with gravitational lensing. Two of these candidates are re-discoveries of gravitational
lenses found as part of CLASS. The remaining candidates were then re-observed at
1.4 GHz and then simultaneously at 4.1 and 7.1 GHz with the VLBA to measure
the spectral index and surface brightness of the individual components as a function
of frequency. Ten were rejected as core-jet or core-hotspot(s) systems, with surface
brightness distributions and/or spectral indices inconsistent with gravitational lens-
ing, and one was rejected after lens modelling demonstrated that the candidate lensed
images failed the parity test. The final lens candidate has an image configuration
that is consistent with a simple lens mass model, although further observations are
required to confirm the lensing nature. Given the two confirmed gravitational lenses
in the mJIVE–20 sample, we find a lensing-rate of 1:(318 ± 225) for a statistical
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Chapter 5

sample of 635 radio sources detected on mas-scales, which is consistent with that
found for CLASS.

5.1 Introduction

Gravitational lensing is the deflection of light from a distant background object
(the source) by a foreground mass distribution (the lens), which is typically a
galaxy or cluster of galaxies (see Treu 2010 for a review). If the surface mass
density of the lens is above some critical value, then multiple images of the back-
ground source can be formed. The positions and relative magnifications of these
images give valuable information about the structure of the lens that can be used
to investigate the lensing mass distribution and test models for galaxy formation;
for example, by precisely measuring the inner mass profile of galaxy-scale dark
matter haloes (e.g. Wucknitz et al. 2004; More et al. 2008; Suyu et al. 2012;
Spingola et al. 2018), placing limits on the mass of their central super-massive
black hole (e.g. Winn et al. 2004; Zhang et al. 2007; Quinn et al. 2016), con-
straining the properties of their interstellar medium (e.g. Mittal et al. 2007; Mao
et al. 2017) or through determining the level of dark matter substructure within
them (e.g. Mao & Schneider 1998; Bradač et al. 2002; Dalal & Kochanek 2002;
Metcalf 2002; McKean et al. 2007b; More et al. 2009; MacLeod et al. 2013; Hsueh
et al. 2016, 2017). Gravitational lenses are also a powerful astrophysical tool for
determining the cosmological parameters, which include precise measurements of
the Hubble constant and competitive tests of dark energy (e.g. Biggs et al. 1999;
Koopmans et al. 2000; Fassnacht et al. 2002; Suyu et al. 2010; Biggs & Browne
2018). Finally, gravitational lenses magnify the high redshift Universe, allowing
detailed studies of galaxies that otherwise would not be detectable with current
instruments (e.g. Barvainis & Ivison 2002; Impellizzeri et al. 2008; Riechers et al.
2011; Sharon et al. 2016; Stacey et al. 2018).

The examples cited above are for those cases of gravitational lensing where
the background source is also radio-loud, which are at a premium for several
reasons. First, the radio emission is not obscured by dust or the bright optical
emission from the lens. Moreover, the source emission is also extended (generally
several pc in size), and therefore, is not affected by micro-lensing from stars in
the lensing galaxy; this allows any intrinsic variability of the background object
to be observed or for accurate flux-ratios between the different images to be mea-
sured. Furthermore, the high angular resolution imaging that is achievable with
very long baseline interferometric (VLBI) observations provides precise positions
for the lensed images, with an astrometric precision of tens of µas. Finally, mon-
itoring with interferometers for time variability between the lensed images can
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Section 5.1. Introduction

be easily carried out.

However, even though the first gravitational lens was found at radio wave-
lengths (Walsh, Carswell & Weymann, 1979), and the first systematic all-sky
surveys were carried out with the Very Large Array (VLA) over two decades
ago (e.g. Hewitt et al. 1988; King et al. 1999; Winn et al. 2000; Browne et al.
2003; Myers et al. 2003), there are only around 35 gravitational lens systems
currently known where the background source is a radio-loud active galactic nu-
cleus (AGN). When compared with the ∼ 200 gravitationally lensed quasars and
star forming galaxies found with the Sloan Digital Sky Survey (e.g. Inada et al.
2010; Auger et al. 2010), and the ∼ 50 gravitationally lensed sub-mm galaxies
found with the Herschel Space Observatory (Negrello et al., 2017) and the South
Pole Telescope (Vieira et al., 2013), the paucity of known radio-loud gravita-
tionally lensed objects represents a missed opportunity, particularly given the
unique advantages radio datasets have over optical and sub-mm observations. In
the future, surveys with the Square Kilometre Array (SKA) have the potential
to discover more than 105 galaxy-scale gravitational lenses at radio wavelengths
(Koopmans et al., 2004; McKean et al., 2015). The success of these surveys will
depend on improving new search strategies over the coming years.

The most successful search to date for gravitationally lensed radio sources is
the Cosmic Lens All-Sky Survey (Myers et al. 2003; Browne et al. 2003), which
found 22 gravitational lenses with a maximum image separation between 0.3 and
6 arcsec from a sample of 11 685 radio sources that were initially selected based
on their flat radio-spectra at cm-wavelengths (13 gravitational lenses were found
within a statistically well defined sample of 8958 radio sources; Chae et al. 2002).
The CLASS parent sample was first observed with the VLA at 8.46 GHz (∼ 170

mas resolution) and then followed-up at progressively higher angular resolution at
other frequencies with the Multi-Element Radio Linked Interferometer Network
(MERLIN) and the Very Long Baseline Array (VLBA) to confirm that the radio
spectral energy distribution, surface brightness and polarization of the candidate
multiple images were consistent with gravitational lensing. Given that the selec-
tion criteria focused on objects with a flat radio-spectrum, which are typically
beamed radio sources, almost all of the lensed objects found by CLASS are unre-
solved or have only slightly extended jet emission when observed on VLBI-scales
(e.g. Biggs et al. 2003, 2004; McKean et al. 2007b; More et al. 2008). However,
the MIT-Green Bank (MG) survey (Hewitt et al., 1988), which also used the
VLA to identify gravitationally lensed radio sources, targeted objects that were
extended, and these have been found to have large gravitational arcs/extended
images that are 100 to 800 mas in size when observed with VLBI (More et al.,
2009; MacLeod et al., 2013; Spingola et al., 2018). Therefore, both the CLASS
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and MG lens surveys demonstrate the potential of finding new gravitationally
lensed radio sources directly from VLBI observations.

In addition, lens surveys with VLBI observations have recently become fea-
sible with the development of wide-band receivers and higher data-recording
rates that increase the imaging sensitivity, and new correlation and data pro-
cessing methods that allow wide-field imaging to be carried out efficiently. Such
studies have been used to investigate the relative contributions of AGN and
star-formation activity within radio galaxies at cosmological distances, and have
typically focused on single fields that are limited by the primary beam of the
individual antennas of the VLBI-array (Garrett et al., 2001; Wrobel et al., 2004;
Garrett et al., 2005; Morgan et al., 2011; Chi et al., 2013; Cao et al., 2014; Rad-
cliffe et al., 2016), but are now also being carried out over larger areas of the
sky (Herrera Ruiz et al., 2017). In particular, the mJIVE–20 programme (mJy
Imaging VLBA Exploration at 20 cm; Deller & Middelberg 2014) is the largest
survey of the radio sky with a VLBI array, detecting 4 965 radio sources in around
200 deg2.

The detectability of radio sources on VLBI-scales and the recent advances in
wide-field VLBI imaging techniques can now be combined to open up a new and
efficient method to increase the number of known gravitational lenses for studies
of galaxy formation and cosmology. In this chapter, we present the first pilot
survey for such gravitational lens systems by using the large sample of sources
found during the mJIVE–20 programme. This chapter is organized as follows.
In Section 5.2, we describe the steps for the selection of the lens candidates from
the mJIVE–20 parent sample. Section 5.3 describes the high angular resolution
multi-frequency follow-up observations with the VLBA and the data reduction
processes. We review the lensing hypothesis for the sample and discuss our results
in Section 5.4. The gravitational lensing statistics of the mJIVE–20 survey and
the future prospects for wide-field VLBI lens searches are discussed in Sections
5.5 and 5.6, respectively. We summarize our conclusions in Section 5.7.

Throughout this chapter, we assume H0 = 67.8 km s−1 Mpc−1, ΩM = 0.31,
and ΩΛ = 0.69 (Planck Collaboration et al., 2016). The spectral index α is
defined as Sν ∝ να, where Sν is the flux density as a function of frequency ν.

5.2 Lens candidate selection criteria

The parent sample of our lens search has come from the mJIVE–20 survey
(Project IDs: BD161 and BD170; PI: Deller), which was a 408-h VLBA filler-time
project to image a large number of radio sources at 1.4 GHz with mas angular
resolution (Deller & Middelberg, 2014). This survey targeted regions of the sky
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FIRST survey mJIVE-20 survey
VLBA snapshot observations at 1.4 GHz

3640 compact sources

• Detection of at least 2 components at >6.75𝝈 level
• Separation > 100 mas
• Integrated flux density ratio < 15:1

81 sources

Morphology, surface brightness and optical imaging 
consistent with gravitational lensing

14 sources
(2 are known lenses)

VLBA follow-up at C-band
4.1 GHz and 7.1 GHz

12 sources

• Morphology consistent with gravitational lensing
• All components have similar surface brightness
• All components have similar spectral energy 

distribution
2 sources

Lens mass modelling

Confirmed lensRejected

Passes all tests

Passes all criteria

Passes all criteria
Fails at least one criterion

• The image configuration can be explained with a 
simple lens mass model

1 source

Optical imaging/spectroscopy

Passes all criteria

Passes all criteria

Figure 5.1: Flow chart diagram that summarizes the steps of the gravitational lensing search
within the mJIVE–20 survey.
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with a VLBI calibrator radio source, as this allowed in-beam calibration of the
antenna complex gains to be used and a more efficient use of the telescope time.
A series of four sub-pointings around the calibrator radio source were used to
achieve an effective field-of-view of 1 deg2 per field. The total observing time per
field was 1 h, with about 15 min per sub-pointing. The data were taken using 64
MHz bandwidth and with dual polarization (a recording rate of 512 Mbit s−1).
This observing set-up gave a close to uniform rms noise of about 150 µJy beam−1

within a radius of ∼20 arcmin around the central calibrator source when using a
natural visibility weighting, while retaining a reduced sensitivity to sources out
to separations of 35 to 40 arcmin. As imaging the full effective primary beam
is not practical, known radio sources were first identified from the Faint Images
of the Radio Sky at Twenty cm (FIRST; Becker et al. 1995) survey and their
positions were used as the phase centres of the multi-field correlations that are
provided by the DiFX software correlator (Deller et al., 2007, 2011). The multi-
field correlations for each pointing used a spectral resolution of 1 MHz channel−1

and an averaging time of 3.2 s for the visibilities. However, for the public data
release1 and imaging, the visibility data were averaged to 16 MHz channel−1 and
20 s, which is sufficient to image a field-of-view of around 0.75× 0.75 arcsec. In
total, 24 903 sources from FIRST have been observed as part of the mJIVE–20
survey, with 4 965 sources detected on mas-scales above a signal-to-noise ratio of
6.75σ.

Although the field-of-view of the averaged datasets is sufficient to find galaxy-
scale gravitational lenses (the average image separation of the CLASS lens sample
is around 1.2 arcsec; Browne et al. 2003), radio-loud lensed objects have been
found with image separations as large as 4.6 arcsec within CLASS (McKean et al.,
2005). Note that a search for wide-separation gravitational lens systems (6 ≤
θsep ≤ 15 arcsec) in the CLASS data returned a null result (Phillips et al., 2001;
McKean, 2011). This is because such wide-separation images require massive
lenses and the lensing optical depth of galaxy groups and clusters is over an order
of magnitude less than for galaxies. Therefore, we retrieved the un-averaged
mJIVE–20 survey uv-data and re-mapped each pointing to make a wide-field
image that was 3.5 × 3.5 arcsec in size. We then ran the mJIVE–20 object
detection software on the re-imaged data (note that it is these data that are now
available in catalogue form from the mJIVE–20 survey archive).

To identify lens candidates in the wide-field catalogue available on 30 June
2013, sources were selected when there was the detection of at least two radio
components at the > 6.75σ-level, with a separation > 100 mas and with an
integrated flux-ratio < 15:1. Given the resolution of our data (the average syn-

1http://safe.nrao.edu/vlba/mjivs/products.html
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thetized beam is about 11× 5 mas2), we could in principle separate components
on 5 to 20 mas-scales. However, this would have severely increased the con-
tamination from core-jet sources and we also do not expect image separations
on this scale from galaxy-sized gravitational lenses. The lower size limit that
we selected is about 3 times smaller than the smallest separation lens known
(i.e., θsep = 334 mas; Wucknitz et al. 2004), but this small size was chosen to
ensure that the merging pair from any potential four image gravitational lens
system, which are highly magnified with respect to the counter-images, would
be identified. We chose a less stringent flux-ratio between the components than
CLASS as we were also interested in finding asymmetric lens systems, which are
useful for studying the inner parts of lensing galaxies. Using these criteria, we
identified 81 radio sources that are then manually classified with grades from A
to D, where grade A corresponds to the highest possibility to be a gravitational
lensing system. By visually inspecting and/or remapping these sources and by
cross-correlating with optical imaging and spectroscopy from the SDSS, we re-
move those sources with a clear core-jet morphology or that are mis-identified
residual side-lobes in our catalogue.

From this process, we obtain a sample of fourteen good gravitational lens
candidates with grade A and B, that have multiple compact components with
a similar surface brightness and, therefore, are not likely to be simply core-jet
type radio sources. Interestingly, we find that two of the class A candidates
(MJV02639 and MJV03238) are already confirmed as gravitational lenses by
CLASS (B1127+385 and B2319+051; Koopmans et al. 1999; Rusin et al. 2001).
Neither the calibrator list nor the FIRST sub-sample used for mJIVE–20 was
selected to specifically include (or exclude) gravitationally lensed radio sources
that were found by CLASS; we note that neither of the two detected CLASS
lenses are VLBA calibrators. This already demonstrates that wide-field VLBI
observations can be used to identify radio-loud lensed sources. To determine the
lensing nature of the remaining twelve candidates, we follow a similar strategy to
CLASS by observing the sources at a higher angular resolution (to test the con-
servation of surface brightness) and at different frequencies (to test whether the
radio-spectra are identical). If a lens candidate does have a radio spectrum and
surface brightness consistent with gravitational lensing, we then test whether the
high resolution structure of the images is consistent with a plausible lensing mass
model. For example, the two known lensed sources, MJV02639 and MJV03238,
have been previously observed with VLBI instruments between 1.7 and 15 GHz
(Koopmans et al., 1999; Rusin et al., 2001). Therefore, we can use already-
obtained information on what the follow-up of these systems would reveal. The
lensed images in these two cases show nearly identical surface brightness and
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radio spectra. Moreover, the flux density ratio of the two lensed images does not
show any dependency on the frequency. The high frequency imaging resolves the
lensed images of both the sources into multiple sub-components, which can be
fit by a simple lens mass model. Consequently, they would have passed all of the
selection criteria based on the radio imaging.

The follow-up observations are discussed in the next section and all of these
steps for selecting and confirming the lens candidates are summarized in Fig. 5.1.
The 1.4 GHz imaging from the mJIVE–20 observations of the twelve best lens
candidates and the two confirmed gravitationally lensed radio sources are pre-
sented in Figs. 5.2, 5.3 and 5.4, respectively. The maximum image separation
of the candidate lensed images, as compared to those from the CLASS survey, is
shown in Fig. 5.5.

5.3 Follow-up observations and data reduction

We followed-up the twelve remaining lens candidates with the VLBA at C-band
between November 2013 and April 2014 (Project IDs: BM397 and BM398; PI:
McKean). This upgraded wide-band receiver allows observations to be carried out
between 4 and 8 GHz, with two separate spectral windows that can be separated
over the band to provide simultaneous multi-frequency imaging. We selected
central observing frequencies of 4.1 and 7.1 GHz, based on the advice of National
Radio Astronomy Observatory (NRAO) staff. The bandwidth of each spectral
window was 128 MHz through dual polarization at each frequency, and the data
were recorded at 2048 Mbit s−1. Given the increase in the observing frequency
and the resulting decrease in the primary beam size (6 to 11 arcmin), we could no
longer use in-beam calibration, and so, we switched between the target and the
phase-reference source every 5 mins, with ∼ 3 min scans on source and ∼ 1 min
scans on the calibrator. The observations were typically ∼ 1.5 h in total for each
lens candidate. The rms map noise of the naturally weighted images was typically
between 40 and 70 µJy beam−1 at both frequencies, where the upper noise values
were due to the difficulty in modelling diffuse structure in those cases that were
only detected with the shortest baselines of the VLBA. Such cases resulted in a
residual fringe pattern in the images, which also helped us establish if a candidate
lensed image was extended or not. A summary of the observations is given in
Table 5.1. Two examples of the uv-coverage are shown in Fig. 5.6 for a low- and
high-declination candidate at the two observing frequencies.

We apply the standard VLBA calibration procedure for phase-referenced ob-
servations using the Astronomical Image Processing System (aips). We start
by applying the Earth orientation and ionospheric corrections. After an initial
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Figure 5.2: The cleaned images at 1.4 GHz of six of the twelve lens candidates from the
mJIVE–20 survey observations. Contours are at (−3, 3, 6, 9, 12, 15, 27) × σrms, the off-source
rms noise. The beam size is shown in the bottom left corner, which is on average 11 × 5 mas2;
north is up and east is left. The blue scale bar in each image represents 0.2 arcsec.
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Figure 5.3: The cleaned images at 1.4 GHz of six of the twelve lens candidates from the
mJIVE–20 survey observations. Contours are at (−3, 3, 6, 9, 12, 15, 27) × σrms, the off-source
rms noise. The beam size is shown in the bottom left corner, which is on average 11 × 5 mas2;
north is up and east is left. The blue scale bar in each image represents 0.2 arcsec.
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Figure 5.4: The self-calibrated images at 1.4 GHz of two mJIVE–20 sources that were previously
confirmed as being gravitationally lensed by CLASS (B1127+385 is on the left and B2319+051
is on the right). Contours are at (−3, 3, 6, 9, 12, 15, 27) × σrms, the off-source rms noise. The
beam size is shown in the bottom left corner, which is on average 11× 5 mas2; north is up and
east is left. The blue scale bar in each image represents 0.2 arcsec.

Figure 5.5: A comparison between the maximum image separation of the mJIVE–20 gravita-
tional lens candidates (red) and the confirmed CLASS gravitational lenses (blue). The bins are
0.5 arcsec wide.
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flagging of bad data, we apply the a priori amplitude calibration by using the
gain curves and system temperatures of the individual antennas, and correcting
for the sampler offsets. Next, we correct for the instrumental delay and paral-
lactic angle variation. We then perform global fringe fitting to correct for the
residual fringe delays and rates, which are measured from observations of the
phase-reference calibrator using solution intervals of between 3 and 5 min. We
use the fringe-finder calibrator to perform the bandpass calibration and we split
out the data at the two frequencies separately in order to perform the imaging.
Most of the targets are detected at a relatively low significance (3 to 10σ), there-
fore when attempting phase-only self-calibration more than 60 per cent of the
solutions failed, even when a solution interval much longer than the coherence
time was used. For this reason, we do not perform self-calibration. We clean
the images by using a threshold that is three times the theoretical rms noise level
and a natural weighting scheme. We assume a conservative uncertainty of ∼ 10

per cent on the estimate of the absolute flux density, which takes into account
calibration errors and possible variability in the candidate lensed images when
we consider the relative flux-ratios.
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Section 5.3. Follow-up observations and data reduction

Figure 5.6: Examples of the uv-coverage for the highest (upper) and lowest declination (lower)
lens candidates at 4.1 (orange points) and 7.1 GHz (blue points).
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Table 5.1: A summary of the 4.1 and 7.1 GHz follow-up observations of the mJIVE–20 lens candidates with the VLBA and the rejection criteria. The
columns (from left to right) give the mJIVE–20 identification number, the VLBA observation date, the lens confidence category (A or B), the rejection
criteria, and whether there is an optical ID in Pan-STARRS. The rejection criteria are based on the spectral index and the surface brightness of the
individual candidate lensed images, and whether a simple lens mass model can explain the structure (see Fig. 5.1). The symbol × is used when a criterion
for being gravitationally lensed has not been fullfilled.

mJIVE–20 ID Obseravtion Date Lens Cat. Rejection criteria Optical ID

Spectral index Surface brightness Lens model

MJV00019 2013 Nov 01 A × no

MJV00533 2014 Apr 12 B × no

MJV02990 2014 Feb 22 B × × no

MJV04363 2014 Mar 23 B × yes

MJV06997 2013 Nov 15 A × × no

MJV07382 2014 Mar 11 B × × no

MJV07417 2014 Mar 29 B no

MJV07467 2014 Mar 05 B × × no

MJV11715 2014 Apr 24 B × × no

MJV11797 2014 Apr 19 B × × no

MJV14607 2014 Mar 02 B × × no

MJV16999 2013 Dec 07 A × × no
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5.4 Results

We now summarize the results of our lens search. In Section 5.4.1, we describe
the properties of the remaining twelve lens candidates at all frequencies. We also
give a discussion on whether they meet the gravitational lensing criteria or not,
as illustrated in Fig. 5.1, which is summarized in Table 5.1. In Section 5.4.2,
we present lens mass models for those candidates that pass the VLBA imaging
tests. In the Appendix, we show the maps from the 4.1 and 7.1 GHz VLBA
observations in Figs. 5.8 to 5.20, the radio spectral energy distributions and flux-
ratios as a function of frequency are shown in Figs. 5.21 and 5.23, respectively,
and we show the optical imaging of the candidates from Pan-STARRS in Fig 5.25.
Also, a summary of the properties of the fourteen targets from our lens search
is presented in Table 5.2. We would like to highlight that the large negative
spectral indices derived by our measurements must be taken with caution. This
is because the spectral index can be biased towards more negative values by
angular resolution and surface brightness sensitivity effects, especially when the
images are very resolved at high frequencies. This does not affect our ability
to discriminate between lensed and non-lensed sources, as we use the spectral
indices as just an indication for comparing the spectral energy distribution of the
two putative lensed images.

5.4.1 Description of the individual lens candidates

We now give a brief review of the radio and optical data for our lens candidates.
In each case, we denote the candidate lensed image with the highest flux-density
at 1.4 GHz as component A, and the second and third highest as components B
and C, respectively.

MJV00019

This lens candidate shows two components separated by 537 mas at 1.4 GHz
(see Fig. 5.2). Component A has extended structure in the east–west direction
with a curved morphology, while component B is also resolved, but has a smaller
angular-extent than component A. Therefore, their surface brightness agrees with
gravitational lensing. At 4.1 and 7.1 GHz, the two components are detected
and resolved into multiple sub-components and their surface brightnesses are
consistent (see Fig. 5.8). The spectral index of components A and B between 4.1
and 7.1 GHz are comparable within the uncertainties and it is steep (α7.1

4.1 ∼ −1.9;
see Table 5.2, and Figs. 5.21 and 5.23). For these reasons, MJV00019 passes the
observational tests and remains a lens candidate. However, we note that 55 per
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cent of the FIRST emission was not recovered on VLBI-scales, which suggests
there is a significant undetected component of extended emission associated with
this source. Due to its steep spectrum between 1.4 and 4.1 GHz, and low flux-
density at 5 GHz, this object was not selected to be observed during CLASS. No
optical emission from a putative lensing galaxy or the candidate lensed images is
detected at the location of the system (see Fig. 5.25).

MJV00533

MJV00533 has two resolved radio components separated by 248 mas at 1.4 GHz,
where each component shows evidence for an extension in the east–west direction
(see Fig. 5.2). At 4.1 and 7.1 GHz, component A is unresolved and there is
no detection of the sub-component to the west, while component B shows faint
resolved extended structure at 4.1 GHz and is completely resolved out at 7.1 GHz
(see Fig. 5.9). Therefore, the surface brightness of the candidate lensed images
is not conserved between the two frequencies (see Table 5.2). We note that their
spectral indices are similar between 1.4 and 4.1 GHz (see Figs. 5.21 and 5.23),
which highlights the importance of the higher-frequency data in determining the
status of such lens candidates. The surface brightness and morphology of this
system suggest that it is a core-jet (or core-hotspot) source. There is no evidence
for an optical counterpart for this object (see Fig. 5.25).

MJV02990

At 1.4 GHz, this lens candidate consists of two resolved components that are
separated by 240 mas (see Fig. 5.2), where component A also has the larger
angular-size, respecting the surface brightness criterion for being a lens system.
At 4.1 GHz, component A is detected and found to be unresolved, while compo-
nent B is not detected (see Fig. 5.10). Given the flux ratio between components
A and B at 1.4 GHz, the fainter component should have been detected at the
7.5σ level at 4.1 GHz, if it was also unresolved (see Table 5.2, and Figs. 5.21 and
5.23). Neither component is detected at 7.1 GHz. Overall, the multi-frequency
radio data suggests that MJV02990 is not a gravitational lens system, but is
more likely a core-jet, mainly due to component B being undetected at 4.1 and
7.1 GHz, which implies that the surface brightness is not conserved. There is no
detection of optical emission at the location of the two radio components (see
Fig. 5.25).

148



Section 5.4. Results

MJV04363

MJV04363 has two radio components separated by 791 mas at 1.4 GHz, with
component A being slightly resolved in the east–west direction, whereas compo-
nent B is found to be unresolved (see Fig. 5.2). At 4.1 and 7.1 GHz, a third
unresolved component (C) is detected between the two candidate lensed images
(see Fig. 5.11). This third radio image is closer in projection to component A
and it could be the emission from a possible lensing galaxy, as for example in the
lensing systems CLASS B2045+265, CLASS B2108+213 and CLASS B2114+022
(Augusto et al., 2001; McKean et al., 2007b, 2005). If this were the case, then
the position of component C suggests that the potential lensing galaxy should
be highly elliptical to reproduce the observed image configuration. However, the
spectral energy distribution of the two putative lensed images is significantly
different, indicating that they are not gravitationally lensed images of the same
background object (see Table 5.2, and Figs. 5.21 and 5.23). Therefore, the surface
brightness and spectral energy distribution of the components suggest that this
system more likely has an optically thick radio core (component C) with two jets
or hotspots (components A and B). Also, only 7 per cent of the FIRST emission
is detected by the mJIVE–20 observations. Finally, there is faint optical emis-
sion at the location of this source in both Pan-STARSS and SDSS (see Fig. 5.25;
Flewelling et al. 2016; Abazajian et al. 2009). The optical emission is classified
as a galaxy, with a magnitude in the r-band of 21.95; there is no spectroscopic
information available, so the redshift is unknown.

MJV06997

This candidate shows two resolved components separated by 276 mas at 1.4 GHz
(see Fig. 5.2). However, we detect only the fainter component B at both 4.1
and 7.1 GHz, and at these frequencies it is unresolved (see Fig. 5.12). Moreover,
given the flux ratio between the two components at 1.4 GHz, component A should
have been detected at the 22-σ level at 4.1 GHz (see Table 5.2, and Figs. 5.21
and 5.23). The images at 4.1 and 7.1 GHz also show a strong fringe pattern
passing through the non-detected component A. This indicates that emission is
detected at this position on the shortest baselines, but not on the majority of
the VLBA baselines, where it is resolved out. Therefore, based on the spectral
energy distribution and the surface brightness of the components, this candidate
is ruled out as a gravitationally lensed radio source. We conclude that this system
is likely a core-jet source, where the jet (component A) has a higher flux-density
at lower frequencies than the flat-spectrum radio core (component B). There is
no optical emission detected at the position of the two radio components (see
Fig. 5.25).
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MJV07382

MJV07382 is one of the most interesting lens candidates that was selected from
the mJIVE–20 parent catalogue. The object is comprised of two extended objects
around 30 mas in size that are separated by 221 mas at 1.4 GHz (see Fig. 5.2).
The morphology and small separation between the components suggested that
it may be a quadruply imaged radio source, where the mJIVE–20 observations
detected only the highly magnified merging pair. The additional 1.4 GHz imaging
taken as part of the mJIVE–20 programme failed to detect any counter-image
emission down to a flux-ratio limit of > 27 (for a 5σ detection), which should
have been sufficient if this is a quadruply imaged radio source. At 4.1 GHz, we
detect only component A, but there is a strong side-lobe pattern corresponding to
component B, indicating that there is resolved extended structure associated with
this component (see Fig. 5.13). We do not detect either component at 7.1 GHz,
but again, there is a fringe structure across the components at this frequency.
In principle, given the flux density of component B at 1.4 GHz, it should have
been detected at the 3.5σ level at 4.1 GHz, although the sparse uv-coverage may
have affected the detectability (see Table 5.2, and Figs. 5.21 and 5.23). Given the
differences in the surface brightness of the two components, MJV07382 is likely
a core-jet object, where component A, with the highest surface brightness, being
the core. There is no evidence for optical emission corresponding to this source
in Pan-STARRS or SDSS (see Fig. 5.25).

MJV07417

At 1.4 GHz, this candidate shows a bright extended component A and an unre-
solved, marginally detected fainter component B that are separated by 458 mas
(see Fig. 5.3). The map at 1.4 GHz also shows a strong fringe pattern associated
with component A, which signifies that it is partly resolved out. There is no
detection of either component in the 4.1 or 7.1 GHz observations (see Fig. 5.14).
Therefore, it is not possible to compare the spectral energy distributions of com-
ponents A and B, or their surface brightness as a function of frequency. At 1.4
GHz, the surface brightnesses of components A and B are 44 and 21 Jy arcsec−2,
respectively. However, as component B is not resolved we do not have an accu-
rate estimate of its surface brightness. There is extensive extended emission from
this target that is not recovered by the 1.4 GHz VLBA imaging; the flux-density
measured by FIRST is almost seven times higher than the mJIVE–20 flux den-
sity. There is also no optical emission detected from this source (see Fig. 5.25).
Given the observational data in hand, we currently cannot exclude MJV07417
from our candidate list, even though it is unlikely to be a gravitational lensing
system given the extended nature of component A and the marginal detection of

150



Section 5.4. Results

component B.

MJV07467

This candidate has two components separated by 221 mas that are resolved at
1.4 GHz into two sub-components in a north-south direction, and where almost all
of the low-resolution FIRST emission is recovered on VLBI-scales by the mJIVE–
20 observations (see Table 5.2 and Fig. 5.3). At 4.1 GHz, component A is resolved
into two sub-components with a more east-west morphology, while component B
is marginally detected, showing a very diffuse and extended structure around a
more compact central emission (see Fig. 5.15). Therefore, the surface brightness
is not conserved at 4.1 GHz, because the fainter image is also the most extended.
At 7.1 GHz, only component A is detected, while component B is completely
resolved out. Given the flux density ratio between the two components at 4.1
GHz (see Fig. 5.24), component B should have been detected at the 4σ level at
7.1 GHz if MJV07467 were a gravitationally lensed source. From the surface
brightness and spectral energy distribution of the components, we reject this
candidate as a gravitational lensing system. There is also no optical emission
detected from this source (see Fig. 5.25)

MJV11715

This lens candidate shows two components that are resolved in an east-west
direction at 1.4 GHz, and although they have a similar size, their flux-densities
differ by a factor of about 4 (see Fig. 5.3). Since their morphology is consistent
with gravitational lensing at 1.4 GHz, but their surface brightness is not, this
candidate was followed-up at 1.4 GHz with deeper observations as part of mJIVE–
20. However, the size of the two components remained very similar, and so their
surface brightness is not consistent with gravitational lensing (see Table 5.2).
These properties rule out this candidate as a lensed source. Moreover, at 4.1 and
7.1 GHz, only component A is detected, and this is resolved into three compact
sub-components with a clear core-jet morphology (see Fig. 5.16). There is no
evidence of a residual fringe pattern in the images, which is a strong indication
that component B is completely resolved out at these frequencies, confirming
that the surface brightness between the two components is different. There is no
optical counterpart of this object (see Fig. 5.25).

MJV11797

At 1.4 GHz, this lens candidate consists of two resolved components separated
by 238 mas that are elongated in an east-west direction (see Fig. 5.3). When

151



Chapter 5

following them up at 4.1 GHz, we find that the two components are slightly
resolved, also in the same direction as seen at 1.4 GHz. This morphology at both
1.4 and 4.1 GHz would be consistent with lensing, as seen on VLBI-scales in the
gravitational lensing system JVAS B0218+357 for example (Biggs et al., 2003).
At 7.1 GHz, we clearly detect component A, while component B is detected only
at the 3σ-level (see Fig. 5.17). However, there is a clear fringe pattern crossing
through the location of component B, indicating that there is extended resolved
structure associated with this component. For this reason, we smooth the 4.1 and
7.1 GHz images to the same resolution as the 1.4 GHz data by using a uv-taper, in
order to verify the marginal detection of component B (see Fig. 5.18). The surface
brightness and morphology seem consistent with lensing, although component B
is more resolved at 7.1 GHz. Also, the overall spectral energy distributions are
similar, particularly at the highest frequencies, but the flux-ratio changes from
1.4 GHz to 4.1 and 7.1 GHz, in that the flux-density of component B is too
high at 1.4 GHz. It may be that due to the uv-coverage, parts of component
A are resolved out at 1.4 GHz, or alternatively, the source is highly variable.
However, we find the total flux-density that we measure on VLBI-scales is within
about 10 per cent of the flux-density found by FIRST at a resolution of around
5 arcsec. Therefore, given the change in the flux-ratios with frequency and the
resolved nature of component B, MJV11797 is likely not a gravitationally lensed
source; further long-track observations of the target to improve the uv-coverage
are needed. As with almost all of the mJIVE–20 targets, no optical emission is
associated with this object (see Fig. 5.25).

MJV14607

MJV14607 has two components A and B that are separated by 215 mas when
observed at 1.4 GHz (see Fig. 5.3). However, the higher flux-density component A
is more compact than component B, violating the required conservation of surface
brightness. This is confirmed by deeper follow-up observations at 1.4 GHz as part
of mJIVE–20. At 4.1 and 7.1 GHz, only component A has been detected, while
component B is completely resolved out, as indicated by the uniform structure
of the noise (see Fig. 5.19). Moreover, component A has a flat spectral index
across the three observing frequencies (see Table 5.2, and Figs. 5.22 and 5.24).
Therefore, this system is not a gravitational lens, but is likely to be a core-jet,
where the jet component is resolved out during the high frequency observations.
There is no optical emission detected for this system (see Fig. 5.25).
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MJV16999

This lens candidate shows two components separated by 452 mas at 1.4 GHz
(see Fig. 5.3). However, the surface brightness is not conserved as component
B is slightly resolved, whereas component A is compact. Consistent with this,
only component A is detected at 4.1 and 7.1 GHz (see Fig. 5.20). Several sub-
components are detected at the 3σ-level around component A at both 4.1 and
7.1 GHz. These unresolved components indicate a core-jet structure. Moreover,
given the flux density ratio between components A and B at 1.4 GHz, and the
spectral index of component A between 1.4 and 4.1 GHz, component B should
have been detected at the 21σ-level at 4.1 GHz (see Table 5.2, and Figs. 5.22 and
5.24). Therefore, MJV16999 is rejected as a gravitational lensing candidate.
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Table 5.2: Observed properties of the final sample of 14 lens candidates. Column 1: mJIVE–20 ID of the lens candidate. Column 2: name of the
components. Column 3 and 4: Right Ascension and Declination of the component. Column 5: flux density from the FIRST survey at 1.4 GHz. The
uncertainty on this flux density is around 5 per cent. Column 6: flux density from the GB6 survey at 4.85 GHz. Column 7: flux density from VLBA 1.4
GHz observations. Column 8: flux density from VLBA 4.1 GHz observations. The 3σ detection limit is estimated as three times the rms noise within the
same area of the 1.4 GHz detection of that image. Column 9: flux density from VLBA 7.1 GHz observations. The 3σ detection limit is estimated as three
times the rms noise within the same area of the 1.4 GHz detection of that image. Column 10: power-law spectral index α between 1.4 GHz and 4.1 GHz.
Column 11: power-law spectral index α between 4.1 GHz and 7.1 GHz. Column 12: surface brightness at 4.1 GHz. Column 13: surface brightness at 7.1
GHz.

mJIVE–20 ID Component
RA Dec SFIRST SGB6 S1.4 GHz S4.1 GHz S7.1 GHz

α4.1
1.4 α7.1

4.1

SB4.1 GHz SB7.1 GHz

(J2000) (J2000) (mJy) (mJy) (mJy) (mJy) (mJy) (Jy arcsec−2) (Jy arcsec−2)

MJV00019
A 13:30:09.541 +31:41:04.563

96.0 n.d.
33± 3 3± 1 1.0± 0.5 −2.2± 0.1 −1.9± 0.2 1.98 2.75

B 13:30:09.534 +31:41:04.032 12± 1 1.3± 0.5 0.45± 0.20 −2.2± 0.1 −1.7± 0.2 2.07 3.24

MJV00533
A 10:26:24.377 +13:14:23.507

60.5 n.d.
19± 2 1.3± 0.2 0.7± 0.1 −2.5± 0.1 −1.2± 0.2 1.32 12.61

B 10:26:24.394 +13:14:23.505 12± 1 1.1± 0.2 < 0.07 −2.2± 0.1 0.64

MJV02990
A 01:10:14.788 +01:35:41.909

16.6 n.d.
7.7± 0.8 0.49± 0.07 < 0.09 −2.6± 0.1 4.57

B 01:10:14.774 +01:35:41.828 3.7± 0.4 < 0.3 < 0.09

MJV04363

A 10:15:55.387 +61:21:49.010

286.9 83± 8

15± 2 7.5± 0.8 6.6± 0.2 −0.6± 0.1 −0.25± 0.19 1.09 2.09

B 10:15:55.293 +61:21:49.429 4.3± 0.4 0.8± 0.2 0.18± 0.04 −1.5± 0.1 −2.7± 0.2 0.92 1.31

C 10:15:55.350 +61:21:49.190 < 0.3 0.7± 0.2 0.4± 0.08 −0.9± 0.2 1.06 1.96

MJV06997
A 11:25:15.553 +25:53:49.125

32.7 n.d.
5.7± 0.6 < 0.7 < 0.3

B 11:25:15.534 +25:53:49.061 2.2± 0.2 1.7± 0.2 1.7± 0.2 −0.2± 0.1 −0.01± 0.19 30.15 5.12

MJV07382
A 12:53:55.151 +12:01:09.568

31.2 n.d.
11± 1 2.7± 0.5 < 2.4 −1.3± 0.1 15.41

B 12:53:55.165 +12:01:09.491 9± 1 < 1.0 < 0.7

MJV07417
A 12:55:29.770 +11:58:53.890

93.4 n.d.
13± 1 < 0.5 < 0.43

B 12:55:29.800 +11:58:53.993 1.2± 0.1 < 0.07 < 0.41

MJV07467
A 13:20:34.188 +22:25:30.401

6.5 n.d.
4.1± 0.4 1.0± 0.1 0.8± 0.1 −1.3± 0.1 −0.6± 0.2 0.81 1.85

B 13:20:34.179 +22:25:30.381 2.3± 0.2 1.0± 0.1 < 0.39 −0.9± 0.1 0.96

MJV11715
A 07:49:54.662 +33:11:14.510

35.0 n.d.
23± 2 5± 1 4± 1 −1.4± 0.1 −0.5± 0.2 3.84 4.53

B 07:49:54.655 +33:11:14.638 6.1± 1.2 < 3.7 < 3.9

MJV11797
A 07:53:54.178 +33:23:08.749

27.4 n.d.
14± 1 1.1± 0.1 0.9± 0.2 −2.4± 0.1 −0.4± 0.2 1.84 2.89

B 07:53:54.164 +33:23:08.914 10± 2 0.36± 0.07 0.33± 0.07 −3.1± 0.1 −0.2± 0.2 1.73

MJV14607
A 14:11:13.843 +02:31:35.721

26.8 n.d.
10± 1 8.9± 1.8 8.5± 1.7 −0.1± 0.1 −0.08± 0.19 34.94 57.81

B 14:11:13.836 +02:31:35.867 8.5± 1.7 < 0.23 < 0.20

MJV16999
A 13:29:15.823 +43:25:17.050

23.6 n.d.
10.1± 1.0 1.6± 0.3 1.5± 0.3 −1.7± 0.1 −0.07± 0.19 3.04 10.54

B 13:29:15.839 +43:25:17.466 6.0± 1.2 < 0.23 < 0.20

MJV03238
A 11:30:00.099 +38:12:03.091

28.9 29± 4
16± 2

B 11:30:00.157 +38:12:03.230 10± 1

MJV02639
A 23:21:40.801 +05:27:37.225

82.3 76± 8
63± 6

B 23:21:40.808 +05:27:36.466 19± 2
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5.4.2 Testing lens models for the remaining candidates

From our analysis of the multi-frequency VLBI data obtained for the mJIVE–20
lens candidates, we have two targets remaining that satisfy the surface brightness
requirements, or there is insufficient information in the data to completely rule
out a particular target; these are MJV00019 and MJV07417. Here, we now test
whether the structure of the sub-components in the candidate lensed images can
be explained by a simple lens mass model.

To model the mass distribution of the remaining gravitational lens candidates,
we use the publicly available software gravlens, which applies a parametric lens
modelling approach (Keeton, 2001a,c). We approximate the mass density distri-
bution of the lensing galaxy to be a singular isothermal sphere (SIS), which is
a simple, but not unrealistic lens mass model that can straightforwardly pro-
duce two images of the background source. The SIS is described by only three
parameters, the lensing galaxy position (xl, yl) and its mass strength (b). The
background object is assumed to be point-like or a collection of point-like sources
where there are separate sub-components observed. Here, we only aim to test
whether the relative positions and flux-densities of the data are consistent with
this mass model.

We assume the lens and source redshifts to be zl = 0.5 and zs = 2, respec-
tively, which are the mean redshift of the lensing galaxy population for galaxy-
galaxy lenses (e.g. Collett 2015) and the mean redshift of the CLASS lensed
sources (e.g. Browne et al. 2003). This choice of lens and source redshift has no
impact on testing whether the mJIVE–20 objects are gravitationally lensed or
not, but is needed to estimate the physical enclosed mass of the lensing galaxy.
Also, as none of the potential lensing galaxies are detected at optical wavelengths,
neither in SDSS nor in Pan-STARSS, for both remaining candidates, we do not
have any information about their position (see Fig. 5.25). As constraints to
the lens mass model, we use the relative positions of the two candidate lensed
images and their sub-components, if detected, from each target. These positions
are measured from a Gaussian fit to the observed emission in the image-plane by
using the task imfit in casa.

MJV00019

This candidate did not fail the selection criteria from the follow-up VLBA imag-
ing; components A and B show a similar surface brightness and spectral energy
distribution (see Table 5.2 and Fig. 5.21). Moreover, there was no evidence
of a clear core-jet or core-hotspots morphology (see Fig. 5.8). Since the two
components are resolved, we parameterize the extended emission to provide ad-
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ditional constraints to the mass model, which otherwise would have been under-
constrained. In total, we have two sub-components in the candidate lensed images
to represent the likely core and extended jet emission, respectively. However, the
image configuration of this system fails the parity test while performing the lens
modelling. For a doubly imaged lensed object, such as is proposed here, one
of the lensed images should have a positive parity and the other should have a
negative parity (e.g. Wambsganss 1998). This means that if the two candidate
lensed images A and B have extended emission, this structure should be mirror
inverted. However, at both 1.4 and 4.1 GHz, the most diffuse emission of compo-
nents A and B is extended along the same direction (see Fig. 5.8). Although such
strange morphologies have been observed before on VLBI-scales, for example, in
the case of CLASS B0128+437 that has four lensed images where one shows a
shift in the jet position angle of around 90 degress (Biggs et al., 2004), this would
require an unusually complex model that we cannot test with the data in hand.
Therefore, we cannot confirm that MJV00019 is a doubly-imaged lensed source,
given the extended emission fails the parity test.

MJV07417

This lens candidate is detected only at 1.4 GHz and, therefore, could not be ruled
out through the multi-frequency imaging. Since component B is unresolved, we
do not have any constraints to test the parity of the candidate lensed images.
Moreover, the positions of the two components do not give enough constraints to
test a realistic lensing mass model. For this reason, we also use the flux density of
components A and B to constrain the SIS mass model; this gives 5 observational
constraints to a model that has 5 free parameters (the lensing galaxy position, its
mass strength and the position of the source). In general, the image flux density
may not be reliable, either because of the possible intrinsic variability of compact
radio sources (e.g. Biggs et al. 1999), because of the presence of substructures (in
the lens plane or along the line-of-sight; e.g. Mao & Schneider 1998), or because
of possible propagation effects due to the interstellar medium (e.g. Koopmans
et al. 2003; Mittal et al. 2007). Therefore, we assume an uncertainty of 20 per
cent on the flux density of the candidate lensed-images to take into account these
possible effects. Our SIS mass model that reproduces the image positions is
shown in Fig. 5.7. The SIS has a mass strength b that corresponds to half the
angular separation between the two images (b = 0.23 ± 0.03) and the lensing
galaxy is at (xl, yl) = (−0.28±0.02, 0.06±0.04), with respect to image A. Based
on lens modelling, it is not possible to rule out this candidate as a gravitational
lens. However, given the simplicity of the model, in order to confirm the lensing
nature, further multi-frequency observations that detect both components are

156



Section 5.5. The lensing statistics of the mJIVE–20 gravitational lens survey

Figure 5.7: An SIS lens mass model that reproduces the image configuration of the candidate
MJV07417. The observed positions are the open circles, while the model-predicted positions
are indicated by the crosses. The critical curve is represented by the red solid line and the black
cross indicates the position of the lensing galaxy. The filled blue circle represents the source
position..

need. Also, deeper optical imaging may uncover the lensing galaxy or detect the
AGN host galaxy if MJV07417 is not gravitationally lensed.

5.5 The lensing statistics of the mJIVE–20 gravi-
tational lens survey

From our follow-up of an initial 3 640 radio sources that were detected on mas-
scales during the mJIVE–20 survey, we have re-discovered two gravitational
lenses that were previously found by CLASS. This gives a lensing rate of at
least 1:(1820± 1287) for our pilot lens search, where the uncertainty is based on
the Poisson statistics for the number of lensed sources discovered and the total
number of sources in the parent sample. However, we have one remaining lens
candidate that we cannot completely rule out given the data in hand. If this
candidate were to be confirmed as a genuine gravitational lens, then this will
increase our lensing rate to at least 1:(1213 ± 700), which is fairly typical for
galaxy-scale gravitational lensing. Note that we also checked in the mJIVE–20
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catalogue for any other previously known radio-loud gravitational lenses that we
may have missed during our search, but there are none. An in-depth analysis of
these lensing statistics is beyond the scope of this chapter, particularly given the
small number statistics that we currently have. Nevertheless, we qualitatively
discuss here the statistical consequences of these two lensing rates.

If we consider a source at redshift zs, the lensing probability, τ(zs), can be
derived by integrating along the light path,

τ(zs) =

∫ zs

0

n(z)σ(z)
c dt

dz
dz, (5.1)

where n(z) is the number density of the potential lens population; σ(z) is the
area in the image-plane where the source must be in order to be strongly grav-
itationally lensed (the lensing cross-section), which is dependent on the mass of
the lens, and the redshifts of the lens and source; and c dt is the path-length
to the background source, which is dependent on the cosmology and the source
redshift (e.g. Turner, Ostriker & Gott 1984). The total number of gravitational
lenses that are found from a survey, Nt, is calculated by integrating the lensing
probabilities of all sources in the parent source population,

Nt =

∫ zmax

0

τ(z)
dN(zs)

dzs
dzs, (5.2)

where dN(zs)/dzs is the differential number counts of the source parent popu-
lation as a function of redshift. From Eqs. (5.1) and (5.2), it is clear that the
number of possible gravitational lenses that are found is a function of the lens
(mass, redshift) and source (redshift) populations. However, the actual number
of gravitational lenses that are found from a survey will also have to take into
account the observational selection effects of that survey, such that the actual
number of gravitational lenses, Na, that we would expect to find is given by,

Na = Nt × C(∆θ, SA/B)×B(Sν , zs). (5.3)

Here, C(∆θ, SA/B) is the survey selection function, which depends on the criteria
used for identifying the lensed sources within the parent sample; the maximum
image separation is given by ∆θ and the flux-density ratio is given by SA/B ,
which are dependent on the angular resolution and sensitivity of the observa-
tions. In addition, sources that have an intrinsic flux-density below the survey
limit will also be included in the parent population sample, due to the lensing
magnification, which is given by B(Sν , zs). Determining the magnification bias
factor requires information on the background source number density as a func-
tion of their flux density and redshift, and should be extended to flux-densities
below the survey limit.
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For example, in the case of CLASS, a complete sample of 11 685 flat-spectrum
radio sources (defined as α1.4

4.85 ≥ −0.5 between 1.4 and 4.85 GHz from low reso-
lution imaging with NVSS and GB6, respectively) with S4.85 GHz ≥ 30 mJy were
observed using the VLA at 8.46 GHz with an angular-resolution of 170 mas, and
to an rms of 170 µJy beam−1. From these observations, gravitational lenses could
only be confidently identified when the image separation was ∆θ ≥ 300 mas, and
when the total flux-density was S8.46 GHz ≥ 18.7 mJy (i.e. for at least a 10σ

detection of the weakest image and for a flux-ratio of SA/B ≤ 10). These criteria
gave a statistical parent sample of 8 958 radio sources, from which 13 gravita-
tional lenses were found. This results in a CLASS lensing rate of 1:(689 ± 190)
(Browne et al., 2003).

Given that the sample of 3 640 radio sources detected on mas-scales by mJIVE–
20 will likely be core-dominated, we can use the CLASS lensing rate to estimate
that, if our parent sample had the same source properties, then we would expect
5± 2 gravitational lenses within mJIVE–20.

However, when we take into account the sensitivity of the mJIVE–20 survey by
imposing our condition of detecting the faintest lensed image at least at the 6.5σ-
level, and a minimum flux-ratio of 10:1, we obtain a statistical parent population
of 635 radio sources with S1.4 GHz ≥ 10.7 mJy. Note that in our lens candidate
selection we apply a larger upper limit on the flux ratio between the putative
lensed images, and our two confirmed lenses fully satisfy the condition of a flux-
ratio less than 10:1. This statistical parent sample gives an mJIVE–20 lensing
rate of 1:(318 ± 225), given the detection of two confirmed gravitational lenses,
which although higher, is still consistent with the CLASS lensing-rate at the
1σ-level, given the small number statistics (i.e. an expectation value of 1 ± 1

gravitational lenses within the mJIVE–20 sample when applying the CLASS
lensing rate). This implies that the lensing optical depth between the mJIVE–
20 and CLASS parent populations are in agreement within the uncertainties,
that is, the mJIVE–20 sources are consistent with the power-law number counts
(McKean et al., 2007a) and the redshift distribution (mean z ∼ 1.2; Henstock
et al. 1997; Marlow et al. 2000; McKean et al., in prep.) of flat-spectrum radio
sources down to S4.85 GHz ≥ 5 mJy.

Finally, we note that even though the mJIVE–20 lens search probes image-
separations of the order of tens mas due to the excellent angular resolution of the
VLBI observations, this does not necessarily mean that substantially more gravi-
tational lenses will be discovered. For example, the image-separation distribution
of the CLASS sample of gravitational lenses (see Fig. 5.5) shows a turnover at
∆θ < 1 arcsec, demonstrating a paucity of gravitational lenses found with small
image-separations; for the nine CLASS gravitational lenses in the statistically
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well-defined sample, where there is only one dominant lensing galaxy, a similar
distribution is found (see Chae 2003). This is because the lensing cross-section
of lower mass galaxies is also lower, and in fact Chae (2003) find that the image-
separation distribution from CLASS is consistent with the galaxy luminosity
functions derived from the SDSS or the 2dF Galaxy Redshift Survey (see also
Oguri 2006 for a discussion on the image-separation distribution with respect to
the halo-mass function). Moreover, the possible mas-scale lens population has
been previously investigated by Wilkinson et al. (2001) using targetted VLBI
observations of a sample of 300 radio sources, which led to a null detection of
lensed sources with image separations between 1.5 and 50 mas. Therefore, it is
not too unexpected that the mJIVE–20 lens search has not detected any small
image-separation systems with ∆θ < 0.3 arcsec, even though the data quality is
sensitive to such rare gravitational lenses.

Observations with a much larger sample of sources detected on mas-scales
with wide-field VLBI would be needed to both test whether the lensing statistics,
and hence the parent population, from the mJIVE–20 and CLASS sources are
similar, and to detect rare systems where the image separation statistics could
potentially constrain models for the halo mass-function.

5.6 Prospects for future lens searches with wide-
field VLBI

Our re-discovery of two gravitational lenses found during CLASS, directly from
the mJIVE–20 imaging at 1.4 GHz, has provided an immediate proof-of-concept
that wide-field surveys with VLBI arrays can efficiently find gravitationally lensed
radio sources. Although these two gravitational lens systems did not go through
the same follow-up procedure as the rest of our candidates (to save observing
time), such observations (at 5 GHz) were carried out as part of their discovery
datasets (Koopmans et al., 1999; Rusin et al., 2001). In this section, we now
discuss the prospects for future lens surveys with wide-field VLBI. Even though
observations at such a high angular resolution of just a few mas are sensitive to
high brightness temperature radio sources, we divide our discussion into essen-
tially two classes of radio source; those where the background source is compact,
such as from CLASS, and those that are extended, such as from the MG lens
survey.
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5.6.1 Compact lensed radio sources

These sources are core-dominated in morphology and have a flat or rising spec-
trum at cm-wavelengths due to synchrotron self-absorption. Being intrinsically
compact, they are easily identifiable at mas-scales with VLBI, even when the uv-
coverage is sparse, such as in the case of a snapshot survey. For example, all of the
gravitational lenses within CLASS would be immediately recovered from a wide-
field VLBI survey that has a similar sensitivity (central σrms = 150 µJy beam−1)
and uv-coverage (see Fig. 5.6) to mJIVE–20. However, multi-frequency follow-up
with VLBI would still be needed to ensure that the surface brightness and the
radio spectra of the candidate lensed images are consistent with gravitational
lensing. Therefore, some filtering or pre-selection of objects that have a higher
likelihood of being lensed would reduce the number of false-positives and limit
the amount of follow-up imaging required.

Efficiently selecting such sources, without spectral information, could be done
by comparing their low-resolution flux-density at arcsec-scales with the flux-
density recovered at mas-scales with a long baseline component of the observ-
ing array. For example, in the cases of MJV03238 (CLASS B1127+385) and
MJV02639 (CLASS B2319+051), the FIRST and mJIVE–20 flux densities agree
to within 10 percent. However, compact radio sources are also sometimes highly
variable. In the case of CLASS B1127+385, radio monitoring has shown that it is
not variable at 8.46 GHz (Rumbaugh et al., 2015). Also, although CLASS B2319+
051 has not been extensively monitored with the VLA for variability, monitor-
ing with the Westerbork Synthesis Radio Telescope (WSRT) at 5 GHz, where
the lensed images were not resolved, did not detect any rapid-variability in the
total flux-density of the system within the measurement uncertainties (Gürkan
et al., 2014). We note that as well as the mJIVE–20 flux density being consistent
with FIRST (and previous VLA imaging by Koopmans et al. 1999 and Rusin
et al. 2001), the flux-ratio between the two lensed images has also not changed
in both systems, which also adds to the case that these objects are not variable.
Therefore, if only those candidates where the mas- and arcsec-scale flux-densities
agree to within 90 percent were selected as part of our search, then our initial
sample of fourteen objects would have been reduced to just five candidates for
follow-up imaging (including at least two confirmed gravitational lenses). As
such, comparing the flux-densities on different angular-scales should help iden-
tify core-dominated radio sources and improve the efficiency of any lens search,
even in the absence of spectral information.

Another method of pre-selecting VLBI-detected radio sources with a high
lensing likelihood is by comparing their very precise radio positions (sub-mas)
with optical information. In the vast majority of non-lensed objects, the core-
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dominated radio emission will be associated with AGN activity that is coincident
with the centre of a massive elliptical galaxy. In the case of a gravitationally
lensed radio source, with a maximum image separation of 0.5 to 2 arcsec, the
radio components will be offset from the position of the lensing galaxy, by around
0.3 to 1 arcsec (depending on the particular image-configuration). Such offsets
would be detectable in comparison with optical imaging, which has a typical
astrometric uncertainty of < 0.3 arcsec. This method was first suggested by
Jackson & Browne (2007), who compared the astrometric positions of objects
within FIRST and SDSS. However, they found no new gravitational lenses as
part of a small pilot search with the VLA and MERLIN, mainly due to the
positional uncertainties of the respective surveys being too large. Future optical
surveys, such as with the Large Synoptic Survey Telescope (LSST) will have a
better astrometric precision, particularly when referenced to Gaia, which will
allow for a better pre-selection of likely lensed objects for high resolution follow-
up.

The expected number of compact radio sources that are gravitationally lensed
can be estimated using the CLASS lensing rate and assuming that the redshift
distribution and number counts of the background source population do not
change significantly at low flux densities. There is evidence that the composi-
tion of the compact radio source population is changing from being dominated
by quasars to radio galaxies towards lower flux-densities, but the overall mean
redshift down to S4.85 GHz ≥ 5 mJy seems to be fairly consistent at z ∼ 1.2

(Henstock et al. 1997; Marlow et al. 2000; McKean et al, in prep.). In addition,
our lens search using the mJIVE–20 survey data is consistent with their being
no change in the properties of the parent population. The differential number
counts of flat-spectrum radio sources with flux-densities S4.85 GHz ≥ 5 mJy are
well described by the power-law,

n(S) = (6.91± 0.42)

(
S4.85

100 mJy

)−2.06±0.01

mJy−1 sr−1, (5.4)

which can be used to estimate the number of compact radio sources that would be
detectable at 1.4 GHz with the VLBA (assuming that all of the flux is recovered
on mas-scales, and by taking into account a median spectral index of faint flat-
spectrum radio sources of α4.85

1.4 = −0.15; McKean et al. 2007a). An all-sky survey
at declinations δ > −30 deg (9.42 sr area) with a 6.5σ point-source sensitivity
of S1.4 GHz ≥ 0.91 mJy (corresponding to a rms at the centre of the primary
beam of σrms = 140 µJy beam−1) is expected to detect 1.15× 106 radio sources
on VLBI-scales. From the CLASS lensing-rate, it is predicted that 1675 of these
radio sources will be gravitationally lensed.

As discussed above, to identify such a sample of gravitationally lensed radio
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sources would require detecting at least two of the lensed images directly in the
survey data. Therefore, assuming a maximum flux ratio of 10:1 between the two
lensed images gives a minimum total flux-density of S1.4 GHz ≥ 10.0 mJy, for
a 6.5σ detection threshold and a central rms of σrms = 140 µJy beam−1. This
would result in a potential parent sample of 9.1× 104 radio sources, which given
the CLASS lensing-rate, should provide a sample of 130 gravitational lenses (in-
cluding the 22 found as part of CLASS). However, this would be for a statistically
complete sample. If the flux-ratio limit were relaxed (to around < 2:1; typical
for doubly-imaged sources and the merging images of quadruply-imaged sources)
and the survey limit was correspondingly lowered to S1.4 GHz ≥ 2.7 mJy, then
around 530 gravitational lenses could be found, potentially increasing the num-
ber of known radio-loud lensed sources by over an order of magnitude. Such a
survey, in terms of depth and area, would be feasible with the VLBA at 1.4 GHz
in around 3000 h (assuming 90-s on-source per pointing and a recording rate of
4096 Mbit s−1). We note that taking the primary beam attenuation into account
would increase the detection threshold in those regions away from the pointing
centre by at most a factor of two, and therefore, the number of radio sources and
gravitational lenses found from such a survey could decrease by at most a factor
of two from those estimated here.

Such a sample of 530 gravitationally lensed radio-loud AGN would be useful
for investigating the halo mass function at the low mass end, given the small
image separations that could be probed (e.g. Chae 2003; Oguri 2006), but also
for testing different models for dark matter by searching for low-mass substruc-
ture or sub-haloes along the line-of-sight (e.g. Dalal & Kochanek 2002). Again,
assuming a similar lensing-rate and ratio of doubly- to quadruply-imaged sources
(about 2:1) to CLASS, around 175 new four-image lens systems are expected
from the wide-field snapshot VLBI survey described above. This is close to the
around 102 systems needed in order to discriminate between cold and warm dark
matter models (Gilman et al., 2018). Finally, the sensitivity to lensed images with
extremely small separations (> 5 mas), would also uniquely constrain the abun-
dance of compact objects (e.g. free-floating black holes with masses > 106 M�)
in the Universe (Wilkinson et al., 2001). Of course, if the number of lensed radio
sources within the statistically complete sample differs significantly from what
is predicted, then that would suggest the compact radio source population with
intrinsic de-magnified flux-densities of 0.2 to 0.5 mJy has likely also changed
significantly in comparison to those sources that were probed by CLASS.
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5.6.2 Extended lensed radio sources

Sources with extended emission, such as those that produce gravitational arcs or
rings at radio wavelengths (Biggs et al., 2001; More et al., 2009; MacLeod et al.,
2013; Hsueh et al., 2016; Spingola et al., 2018) can provide a wealth of information
to determine precise mass models for the lens (Wucknitz et al., 2004). Also, due
to the excellent angular resolution provided by VLBI, such lensed sources are
sensitive to the direct detection of low mass substructure in the lens (Vegetti
et al., 2012) or along the line-of-sight (Despali et al., 2018), through the local
change they produce in the surface brightness distribution of the extended jet-
emission (Metcalf, 2002). However, the lensing-rate of such objects is not well
known, as the MG lens survey only discovered six gravitational lenses, and the
survey was not designed to be statistically complete. Also, the radio sources that
have produced the largest gravitational arcs are also the most luminous known,
and so, new surveys that extend to fainter flux-densities will likely only detect
lensed radio sources with weak jets.

Identifying those lensed radio sources with extended emission would be chal-
lenging from a snapshot survey as the uv-coverage would not be sufficient to
detect the full extent of the gravitational arc. However, once a gravitationally
lensed radio source has been identified from the survey data, an indication for ex-
tended emission that wasn’t fully detected from the snapshot observations could
come from comparing the total flux density measured on arcsec-scales with that
found on VLBI-scales; this method can be confidently used only in the case of
quadruply-imaged radio sources, because the VLBI observations alone can al-
ready show that the source is gravitationally lensed. Such objects could then
be prioritised for deeper, long-track imaging in order to recover the extended
gravitational arcs. However, for those cases of doubly-imaged sources with ex-
tended emission, this method would likely not be sufficient to distinguish between
a lensed radio source with extended emission and a resolved non-lensed core-jet
radio source, for example. Therefore, multi-wavelength and spectroscopic obser-
vations would still be required to understand if such an object is gravitationally
lensed or not.

5.7 Conclusions

We have carried out the first wide-field VLBI search for gravitationally lensed ra-
dio sources using data from the mJIVE–20 survey. Among the mJIVE–20 sample
of 3 640 compact radio sources, 81 sources were identified as having multiple radio
components that are separated by more than 100 mas and with a flux-density
ratio of less than 15:1. Among them, we selected fourteen sources as gravita-
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tional lens candidates, based on the morphology and surface brightness of the
radio emission at 1.4 GHz. Two of these selected candidates are a re-discovery
of the known gravitational lenses CLASS B1127+385 and CLASS B2319+051,
which provides an immediate proof-of-concept that this selection method is able
to find lensed radio sources.

We have followed-up the remaining twelve lens candidates at 4.1 and 7.1 GHz
with the VLBA, following a strategy that is similar to the CLASS survey. Two
of the targets (MJV00019 and MJV07417) have a surface brightness and spectral
indices that are either consistent with lensing, or the data in hand are insufficient
to rule out the lensing hypothesis; the remaining ten objects are likely core-jet
radio sources. We find that in the case of MJV00019, it is not possible to repro-
duce the morphology of the candidate lensed images with a simple lensing mass
model. For the other target, the configuration of the candidate lensed images is
found to be compatible with the lensing scenario. However, since MJV07417 is
detected only at 1.4 GHz, further deeper observations at 5 GHz are needed in
order to confirm the true nature of this system.

Based on our search, we find a lensing rate for VLBI-detected radio sources
at 1.4 GHz of 1:(318±225), which although is almost a factor of two higher than
that of CLASS, is still consistent given the large uncertainties due to the small
number statistics. The implication of this result is that the lensing optical depth
of compact radio sources has not changed significantly toward lower flux densities.
We estimate that a wide-field survey carried out with the VLBA, to a sensitivity
of 140 µJy beam−1 over 9.42 sr, should find around 530 new gravitationally lensed
radio sources, given the lensing-rate and source properties of the CLASS survey.
Such a survey would be a precursor to what could be done with the SKA, where
the µJy beam−1 sensitivity should detect thousands of radio-loud lensed AGN
(McKean et al., 2015), which could be done most efficiently if the SKA has a
VLBI component (Paragi et al., 2015).

Finally, we note that we have looked through only part of the mJIVE–20
survey data, and now that the survey is complete, we may find new gravitationally
lensed radio sources in the final 30 percent of the data. Our search will also be
refined using the results found here. In addition, we have only searched for
gravitationally lensed objects with image separations ≥ 100 mas. Extending the
parameter space to smaller image-separations may uncover close merging pairs of
quadruply imaged sources, and also potentially detect the> 5 mas image splitting
by low mass, compact objects along the line-of-sight to the distant radio sources.
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Appendix

This appendix includes the maps from the 4.1 and 7.1 GHz follow-up observations
(Figs. 5.8 to 5.20), and the radio spectral energy distributions (Figs. 5.21 and
5.22) and the flux-ratios (Fig. 5.23 and 5.24) of the lens candidates. Optical
images of the field around each target are shown in Fig. 5.25.
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Figure 5.8: Multi-frequency images of the lens candidate MJV00019 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.9: Multi-frequency images of the lens candidate MJV00533 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.10: Multi-frequency images of the lens candidate MJV02990 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2
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Figure 5.11: Multi-frequency images of the lens candidate MJV04363 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the second row and component C is shown on the bottom row. The beam is plotted in red on the bottom left corner of
each image. Contour levels increase by a factor of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08
arcsec. The cutouts are centred at the coordinates listed in Table 5.2
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Figure 5.12: Multi-frequency images of the lens candidate MJV06997 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.13: Multi-frequency images of the lens candidate MJV07382 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.14: Multi-frequency images of the lens candidate MJV07417 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.15: Multi-frequency images of the lens candidate MJV07467 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.16: Multi-frequency images of the lens candidate MJV11715 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.1 arcsec × 0.1 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.17: Multi-frequency images of the lens candidate MJV11797 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.18: Overlay of contours at 1.7 (black), 4.1 (red) and 7.1 GHz (blue) of the lens
candidate MJV11797 smoothed to a resolution of 12 mas × 3 mas at position angle of 0.150
degrees east of north. The restoring beam is shown in the bottom left corner. The contour
levels increase by a factor of 3, where the first contour is 3 times the off-source noise level.
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Figure 5.19: Multi-frequency images of the lens candidate MJV14607 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.20: Multi-frequency images of the lens candidate MJV16999 at 1.4 (left), 4.1 (centre) and 7.1 GHz (right). Component A is shown on the top
row, component B is shown on the bottom row. The beam is plotted in red on the bottom left corner of each image. Contour levels increase by a factor
of 3, where the first contour is 3 times the off-source noise level and the cutouts are 0.08 arcsec × 0.08 arcsec. The cutouts are centred at the coordinates
listed in Table 5.2.
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Figure 5.21: The spectral energy distribution of six of the lens candidates between 1.4 and 7.1
GHz. The filled circles indicate component A (red), B (blue) and, if detected, a third component
C (green). The arrows indicate the 3σ detection limit at 4.1 and 7.1 GHz, estimated as three
times the flux density within the same area of the 1.4 GHz detection of that image. The
uncertainty on the flux density is assumed to be 10 per cent, which is a conservative estimate
of the absolute flux density calibration of the VLBA.
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Figure 5.22: The spectral energy distribution of six of the lens candidates between 1.4 and 7.1
GHz. The filled circles indicate component A (red), B (blue) and, if detected, a third component
C (green). The arrows indicate the 3σ detection limit at 4.1 and 7.1 GHz, estimated as three
times the flux density within the same area of the 1.4 GHz detection of that image. The
uncertainty on the flux density is assumed to be 10 per cent, which is a conservative estimate
of the absolute flux density calibration of the VLBA.
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Figure 5.23: The flux density ratio (B/A) of six of the lens candidates as a function of frequency.
The arrows represent the 3σ upper limits when a detection has been made of at least one
candidate lensed image.
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Figure 5.24: The flux density ratio (B/A) of six of the lens candidates as a function of frequency.
The arrows represent the 3σ upper limits when a detection has been made of at least one
candidate lensed image.
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Figure 5.25: RGB SDSS images of the mJIVE–20 lens candidates. Cutouts are 0.5 arcmin ×
0.5 arcmin; the white cross indicates the position of component A at 1.4 GHz, the red circle
indicates the possible optical counterpart of the radio detection.
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