25 research outputs found

    Validation of a novel particle isolation procedure using particle doped tissue samples.

    Get PDF
    A novel particle isolation method for tissue samples was developed and tested using particle-doped peri-articular tissues from ovine cadavers. This enabled sensitivity of the isolation technique to be established by doping tissue samples of 0.25 g with very low particle volumes of 2.5 Āµm 3 per sample. Image analysis was used to verify that the method caused no changes to particle size or morphologies

    Recovery rate data for silicon nitride nanoparticle isolation using sodium polytungstate density gradients

    Get PDF
    Ā© 2018 The Authors The average recovery rate of silicon nitride nanoparticles isolated from serum using the method detailed in previous article ā€œA novel method for isolation and recovery of ceramic nanoparticles and metal wear debris from serum lubricants at ultra-low wear rateā€ (Lal et al., 2016) [1] was tested gravimetrically by weighing particles doped into serum before and after the isolation process. An average recovery rate of approximately 89.6% (Ā± 7.1 SD) was achieved

    Recovery of low volumes of wear debris from rat stifle joint tissues using a novel particle isolation method

    Get PDF
    Less than optimal particle isolation techniques have impeded analysis of orthopaedic wear debris in vivo. The purpose of this research was to develop and test an improved method for particle isolation from tissue. A volume of 0.018ā€ÆmmĀ³ of clinically relevant CoCrMo, Ti-6Al-4V or Siā‚ƒNā‚„ particles was injected into rat stifle joints for seven days of in vivo exposure. Following sacrifice, particles were located within tissues using histology. The particles were recovered by enzymatic digestion of periarticular tissue with papain and proteinase K, followed by ultracentrifugation using a sodium polytungstate density gradient. Particles were recovered from all samples, observed using SEM and the particle composition was verified using EDX, which demonstrated that all isolated particles were free from contamination. Particle size, aspect ratio and circularity were measured using image analysis software. There were no significant changes to the measured parameters of CoCrMo or Siā‚ƒNā‚„ particles before and after the recovery process (KS tests, pā€Æ>ā€Æ0.05). Titanium particles were too few before and after isolation to analyse statistically, though size and morphologies were similar. Overall the method demonstrated a significant improvement to current particle isolation methods from tissue in terms of sensitivity and efficacy at removal of protein, and has the potential to be used for the isolation of ultra-low wearing total joint replacement materials from periprosthetic tissues

    Development and optimisation data of a tissue digestion method for the isolation of orthopaedic wear particles

    Get PDF
    The data contained within this article relate to several enzymatic tissue digestion experiments which were performed to produce an optimised protocol for the digestion of tissue samples. The digestion experiments involved a total of four different digestion protocols. The first protocol involved digestion with proteinase K, without the use of glycine. The second protocol involved digestion with proteinase K in the presence of glycine. The third protocol consisted of proteinase K digestion in the presence of glycine, with more frequent enzyme replenishment. The final protocol was similar to the third protocol but included a papain digestion stage prior to digestion with proteinase K. The data contained within this article are photographs of tissue samples which were captured at key stages of the four protocols and written descriptions based on visual observation of the tissue samples, which document the appearance of the tissue digests

    Development and characterisation of a large diameter decellularised vascular allograft

    Get PDF
    The aims of this study were to develop a biological large diameter vascular graft by decellularisation of native human aorta to remove the immunogenic cells whilst retaining the essential biomechanical, and biochemical properties for the ultimate benefit of patients with infected synthetic grafts. Donor aortas (n = 6) were subjected to an adaptation of a propriety decellularisation process to remove the cells and acellularity assessed by histological analysis and extraction and quantification of total DNA. The biocompatibility of the acellular aortas was determined using standard contact cytotoxicity tests. Collagen and denatured collagen content of aortas was determined and immunohistochemistry was used to determine the presence of specific extracellular matrix proteins. Donor aortas (n = 6) were divided into two, with one half subject to decellularisation and the other half retained as native tissue. The native and decellularised aorta sections were then subject to uniaxial tensile testing to failure [axial and circumferential directions] and suture retention testing. The data was compared using a paired t-test. Histological evaluation showed an absence of cells in the treated aortas and retention of histoarchitecture including elastin content. The decellularised aortas had less than 15 ng mgĀÆĀ¹ total DNA per dry weight (mean 94% reduction) and were biocompatible as determined by in vitro contact cytotoxicity tests. There were no gross changes in the histoarchitecture [elastin and collagen matrix] of the acellular aortas compared to native controls. The decellularisation process also reduced calcium deposits within the tissue. The uniaxial tensile and suture retention testing revealed no significant differences in the material properties (p > 0.05) of decellularised aorta. The decellularisation procedure resulted in minimal changes to the biological and biomechanical properties of the donor aortas. Acellular donor aorta has excellent potential for use as a large diameter vascular graft
    corecore