12 research outputs found

    X-ray Studies of Exoplanets: A 2020 Decadal Survey White Paper

    Get PDF
    Over the last two decades, the discovery of exoplanets has fundamentally changed our perception of the universe and humanity's place within it. Recent work indicates that a solar system's X-ray and high energy particle environment is of fundamental importance to the formation and development of the atmospheres of close-in planets such as hot Jupiters, and Earth-like planets around M stars. X-ray imaging and spectroscopy provide powerful and unique windows into the high energy flux that an exoplanet experiences, and X-ray photons also serve as proxies for potentially transfigurative coronal mass ejections. Finally, if the host star is a bright enough X-ray source, transit measurements akin to those in the optical and infrared are possible and allow for direct characterization of the upper atmospheres of exoplanets. In this brief white paper, we discuss contributions to the study of exoplanets and their environs which can be made by X-ray data of increasingly high quality that are achievable in the next 10--15 years

    Stellar Coronal and Wind Models: Impact on Exoplanets

    Full text link
    Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this Chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this Chapter, we discuss the effects of coronal winds on exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief: Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer Reference Work

    Menstruation and the cycle of poverty: a cluster quasi-randomised control trial of sanitary pad and puberty education provision in Uganda

    Get PDF
    BACKGROUND: Poor menstrual knowledge and access to sanitary products have been proposed as barriers to menstrual health and school attendance. In response, interventions targeting these needs have seen increasing implementation in public and private sectors. However, there has been limited assessment of their effectiveness. // OBJECTIVES: Assess the impact of providing reusable sanitary pads and puberty education on girls’ school attendance and psychosocial wellbeing outcomes. // METHODS: A cluster quasi-randomised controlled trial was conducted across 8 schools, including 1124 girls, in rural Uganda. Schools were allocated to one of four conditions: the provision of puberty education alone; reusable sanitary pads alone; puberty education and reusable sanitary pads; and a control (no intervention). The primary outcome was school attendance. Secondary outcomes reflected psychosocial wellbeing. // RESULTS: At follow-up, school attendance had worsened for girls across all conditions. Per-protocol analysis revealed that this decline was significantly greater for those in the control condition d = 0.52 (95%CI 0.26–0.77), with those in control schools having a 17.1% (95%CI: 8.7–25.5) greater drop in attendance than those in any intervention school. There were no differences between the intervention conditions. High rates of school drop-out and transfer meant the trial suffered from substantial participant drop-out. Intention-to-treat analyses using two different imputation strategies were consistent with the main results, with mean differences of 5.2% attendance in best-case and 24.5% in worst-case imputations. Results were robust to adjustments for clustering. There was no impact of the interventions on girls’ self-reported shame or insecurity during menstruation. // CONCLUSION: Results of the trial support the hypothesised positive impact of providing sanitary pads or puberty education for girls’ school attendance in a developing country context. Findings must be interpreted with caution in light of poor participant retention, intervention fidelity, and the attendance measures used

    A genetic framework for flowering-time pathways in Citrus spp.

    No full text
    Floral transition is one the most drastic changes occurring during the life cycle of a plant. The shoot apical meristem switches from the production of leaves with associated secondary shoot meristems to the production of flower meristems. This transition is abrupt and generally irreversible, suggesting it is regulated by a robust gene regulatory network capable of driving sharp transitions. The moment at which this transition occurs is precisely determined by environmental and endogenous signals. A large number of genes acting within these pathways have been cloned in model herbaceous plants such as Arabidopsis thaliana. In this paper, we report the results of our search in the Citrus expressed sequence tag (CitEST) database for expressed sequence tags (ESTs) showing sequence homology with known elements of flowering-time pathways. We have searched all sequence clusters in the CitEST database and identified more than one hundred Citrus spp sequences that codify putative conserved elements of the autonomous, vernalization, photoperiod response and gibberelic acid-controlled flowering-time pathways. Additionally, we have characterized in silico putative members of the Citrus spp homologs to the Arabidopsis CONSTANS family of transcription factors
    corecore