1,025 research outputs found
Chiral Modulations in Curved Space I: Formalism
The goal of this paper is to present a formalism that allows to handle
four-fermion effective theories at finite temperature and density in curved
space. The formalism is based on the use of the effective action and zeta
function regularization, supports the inclusion of inhomogeneous and
anisotropic phases. One of the key points of the method is the use of a
non-perturbative ansatz for the heat-kernel that returns the effective action
in partially resummed form, providing a way to go beyond the approximations
based on the Ginzburg-Landau expansion for the partition function. The
effective action for the case of ultra-static Riemannian spacetimes with
compact spatial section is discussed in general and a series representation,
valid when the chemical potential satisfies a certain constraint, is derived.
To see the formalism at work, we consider the case of static Einstein spaces at
zero chemical potential. Although in this case we expect inhomogeneous phases
to occur only as meta-stable states, the problem is complex enough and allows
to illustrate how to implement numerical studies of inhomogeneous phases in
curved space. Finally, we extend the formalism to include arbitrary chemical
potentials and obtain the analytical continuation of the effective action in
curved space.Comment: 22 pages, 3 figures; version to appear in JHE
Chromosome assignment of two cloned DNA probes hybridizing predominantly to human sex chromosomes
In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Equilibrium configurations of two charged masses in General Relativity
An asymptotically flat static solution of Einstein-Maxwell equations which
describes the field of two non-extreme Reissner - Nordstr\"om sources in
equilibrium is presented. It is expressed in terms of physical parameters of
the sources (their masses, charges and separating distance). Very simple
analytical forms were found for the solution as well as for the equilibrium
condition which guarantees the absence of any struts on the symmetry axis. This
condition shows that the equilibrium is not possible for two black holes or for
two naked singularities. However, in the case when one of the sources is a
black hole and another one is a naked singularity, the equilibrium is possible
at some distance separating the sources. It is interesting that for
appropriately chosen parameters even a Schwarzschild black hole together with a
naked singularity can be "suspended" freely in the superposition of their
fields.Comment: 4 pages; accepted for publication in Phys. Rev.
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters
We present the temperature and polarization angular power spectra measured by
the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time
data collected during 2013-14 using two detector arrays at 149 GHz, from 548
deg of sky on the celestial equator. We use these spectra, and the spectra
measured with the MBAC camera on ACT from 2008-10, in combination with Planck
and WMAP data to estimate cosmological parameters from the temperature,
polarization, and temperature-polarization cross-correlations. We find the new
ACTPol data to be consistent with the LCDM model. The ACTPol
temperature-polarization cross-spectrum now provides stronger constraints on
multiple parameters than the ACTPol temperature spectrum, including the baryon
density, the acoustic peak angular scale, and the derived Hubble constant.
Adding the new data to planck temperature data tightens the limits on damping
tail parameters, for example reducing the joint uncertainty on the number of
neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure
Quantum systems in weak gravitational fields
Fully covariant wave equations predict the existence of a class of
inertial-gravitational effects that can be tested experimentally. In these
equations inertia and gravity appear as external classical fields, but, by
conforming to general relativity, provide very valuable information on how
Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the
International School of Cosmology and Gravitation "Advances in the interplay
between quantum and gravity physics" edited by V. De Sabbata and A.
Zheltukhin, Kluwer Academic Publishers, Dordrech
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Back reaction, covariant anomaly and effective action
In the presence of back reaction, we first produce the one-loop corrections
for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black
hole. Then, based on the covariant anomaly cancelation method and the effective
action technique, the modified expressions for the fluxes of gauge current and
energy momentum tensor, due to the effect of back reaction, are obtained. The
results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody
at the temperature with quantum corrections, thus confirming the robustness of
the covariant anomaly cancelation method and the effective action technique for
black holes with back reaction.Comment: 17 page
Co-evolutionary dynamics of collective action with signaling for a quorum
Collective signaling for a quorum is found in a wide range of organisms that face collective action problems whose successful solution requires the participation of some quorum of the individuals present. These range from humans, to social insects, to bacteria. The mechanisms involved, the quorum required, and the size of the group may vary. Here we address the general question of the evolution of collective signaling at a high level of abstraction. We investigate the evolutionary dynamics of a population engaging in a signaling N-person game theoretic model. Parameter settings allow for loners and cheaters, and for costly or costless signals. We find a rich dynamics, showing how natural selection, operating on a population of individuals endowed with the simplest strategies, is able to evolve a costly signaling system that allows individuals to respond appropriately to different states of Nature. Signaling robustly promotes cooperative collective action, in particular when coordinated action is most needed and difficult to achieve. Two different signaling systems may emerge depending on Nature's most prevalent states.Funding: This research was supported by FEDER through POFC - COMPETE, FCT-Portugal through grants SFRH/BD/86465/2012, PTDC/MAT/122897/2010, EXPL/EEI-SII/2556/2013, and by multi-annual funding of CMAF-UL, CBMA-UM and INESC-ID (under the projects PEst-OE/BIA/UI4050/2014 and UID/CEC/50021/2013) provided by FCT-Portugal, and by Fundacao Calouste Gulbenkian through the "Stimulus to Research" program for young researchers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
- …
