275 research outputs found
A transposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii
We have isolated a 5.7-kbp dispersed moderately repeated DNA sequence (TOC1) from the mutant OEE1 gene of the Chlamydomonas reinhardtii strain FUD44. The copy number (2 to over 30) and genomic locations of TOC1 elements vary widely in different C. reinhardtii strains. Our standard laboratory photosynthetic strain exhibits a high degree of TOC1 instability during short periods of mitotic growth. TOC1 appears to be a retrotransposon: it contains LTRs and an oligonucleotide stretch that corresponds to a conserved pentapeptide of reverse transcriptase. TOC1 is an unusual retrotransposon: it is not flanked by a target site duplication in the OEE1 gene, the left end of TOC1 only contains a fraction of the LTR the remainder of which is present at its right end and TOC1 does not start with a 5' TG and end with a 3' CA. In most cases, TOC1 excision leaves behind a complete solo LTR sequence (577 bp) and in one case a deleted solo LTR sequence (191 bp). Solo LTR sequences form a separate family of repeated sequences in most of the strains tested
Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica
Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.Portuguese funds from FCT - Foundation for Science and Technology [UID/Multi/04326/2013]; SZN PhD fellowship via the Open University; ESF COST Action Seagrass Productivity: From Genes to Ecosystem Management [ES0906]info:eu-repo/semantics/publishedVersio
Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition
A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii
The unicellular green alga Chlamydomonas reinhardtii has emerged as a superb model species in plant biology. Although the alga is easily transformable, the low efficiency of transgene expression from the Chlamydomonas nuclear genome has severely hampered functional genomics research. For example, poor transgene expression is held responsible for the lack of sensitive reporter genes to monitor gene expression in vivo, analyze subcellular protein localization or study protein–protein interactions. Here, we have tested the luciferase from the marine copepod Gaussia princeps (G-Luc) for its suitability as a sensitive bioluminescent reporter of gene expression in Chlamydomonas. We show that a Gaussia luciferase gene variant, engineered to match the codon usage in the Chlamydomonas nuclear genome, serves as a highly sensitive reporter of gene expression from both constitutive and inducible algal promoters. Its bioluminescence signal intensity greatly surpasses previously developed reporters for Chlamydomonas nuclear gene expression and reaches values high enough for utilizing the reporter as a tool to monitor responses to environmental stresses in vivo and to conduct high-throughput screenings for signaling mutants in Chlamydomonas
Micro-algae come of age as a platform for recombinant protein production
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins
Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum
Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies
Nonsurgical and surgical periodontal therapy in single-rooted teeth
The purpose of this study was to compare the effect of tooth related and patient related factors on the success of non-surgical and surgical periodontal therapy. In 41 patients (22 female) with untreated and/or recurrent periodontitis, no therapy, scaling and root planing (SRP), or access flap (AF) were assigned according to probing pocket depth (PPD). PPD and vertical relative attachment level (RAL-V) were obtained initially, 3 and 6 months after therapy. Baseline data were compared according to therapy, jaw, tooth type, and site. Factors influencing clinical parameters were identified using multilevel analyses. Baseline PPDs were deeper interproximally, in the maxilla and at premolars compared to buccal/oral sites, mandibular, and anterior teeth. At 6 months, PPD reduction and RAL-V gain were significantly greater at sites receiving SRP and AF as compared to untreated sites (p < 0.001). PPD reduction and RAL-V gain were significantly less (p < 0.005) in smokers as compared to nosmokers and at interproximal sites (p < 0.0001) as compared to buccal/oral sites. RAL-V gain was less in aggressive periodontitis, and PPD reduction was less in the maxilla (p < 0.001). In sites with greater bone loss and infrabony defects, a poorer response was observed regarding RAL-V gain or PPD reduction, respectively. The conclusions of the study are the following: (1) Nonsurgical and surgical periodontal therapies are effective in single-rooted teeth; (2) severe interproximal bone loss and infrabony defects deteriorate clinical results; and (3) there seem to be more defect-associated (tooth, site) factors influencing treatment outcome than patient-associated factors
Introduced Mammalian Predators Induce Behavioural Changes in Parental Care in an Endemic New Zealand Bird
The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura). We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp.) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible
An Optimized, Chemically Regulated Gene Expression System for Chlamydomonas
BACKGROUND: Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system. METHODOLOGY: Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 microM) TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 microM). Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient "wave" in luciferase activity, which can be repeated in subsequent growth cycles. CONCLUSIONS: We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled "waves" in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas
Interest in the Use of Computerized Patient Portals: Role of the Provider–Patient Relationship
- …
