8 research outputs found

    Choosy Moral Punishers

    Get PDF
    The punishment of social misconduct is a powerful mechanism for stabilizing high levels of cooperation among unrelated individuals. It is regularly assumed that humans have a universal disposition to punish social norm violators, which is sometimes labelled “universal structure of human morality” or “pure aversion to social betrayal”. Here we present evidence that, contrary to this hypothesis, the propensity to punish a moral norm violator varies among participants with different career trajectories. In anonymous real-life conditions, future teachers punished a talented but immoral young violinist: they voted against her in an important music competition when they had been informed of her previous blatant misconduct toward fellow violin students. In contrast, future police officers and high school students did not punish. This variation among socio-professional categories indicates that the punishment of norm violators is not entirely explained by an aversion to social betrayal. We suggest that context specificity plays an important role in normative behaviour; people seem inclined to enforce social norms only in situations that are familiar, relevant for their social category, and possibly strategically advantageous

    The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin

    Get PDF
    In fission yeast, the formation of centromeric heterochromatin is induced through the RNA interference (RNAi)-mediated pathway. Some pre-mRNA splicing mutants (prp) exhibit defective formation of centromeric heterochromatin, suggesting that splicing factors play roles in the formation of heterochromatin, or alternatively that the defect is caused by impaired splicing of pre-mRNAs encoding RNAi factors. Herein, we demonstrate that the splicing factor spPrp16p is enriched at the centromere, and associates with Cid12p (a factor in the RNAi pathway) and the intron-containing dg ncRNA. Interestingly, removal of the dg intron, mutations of its splice sites, or replacement of the dg intron with an euchromatic intron significantly decreased H3K9 dimethylation. We also revealed that splicing of dg ncRNA is repressed in cells and its repression depends on the distance from the transcription start site to the intron. Inefficient splicing was also observed in other intron-containing centromeric ncRNAs, dh and antisense dg, and splicing of antisense dg ncRNA was repressed in the presence of the RNAi factors. Our results suggest that the introns retained in centromeric ncRNAs work as facilitators, co-operating with splicing factors assembled on the intron and serving as a platform for the recruitment of RNAi factors, in the formation of centromeric heterochromatin

    The expanding world of small RNAs in plants

    No full text
    Plant genomes encode various small RNAs that function in distinct, yet overlapping, genetic and epigenetic silencing pathways. However, the abundance and diversity of small-RNA classes varies among plant species, suggesting coevolution between environmental adaptations and gene-silencing mechanisms. Biogenesis of small RNAs in plants is well understood, but we are just beginning to uncover their intricate regulation and activity. Here, we discuss the biogenesis of plant small RNAs, such as microRNAs, secondary siRNAs and heterochromatic siRNAs, and their diverse cellular and developmental functions, including in reproductive transitions, genomic imprinting and paramutation. We also discuss the diversification of small-RNA-directed silencing pathways through the expansion of RNA-dependent RNA polymerases, DICER proteins and ARGONAUTE proteins

    RNA-mediated epigenetic regulation of gene expression

    No full text

    The expanding world of small RNAs in plants

    No full text
    corecore