139 research outputs found

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    A Blast Wave from the 1843 Eruption of Eta Carinae

    Full text link
    Very massive stars shed much of their mass in violent precursor eruptions as luminous blue variables (LBVs) before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events, ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 10^50 ergs. Some faster material with speeds up to 1000-2000 km/s had previously been reported but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Car's outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star's luminosity, but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability. This may alter interpretations of similar events seen in other galaxies.Comment: 10 pages, 3 color figs, supplementary information. Accepted by Natur

    Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain

    Get PDF
    BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression

    Enzymatic Shaving of the Tegument Surface of Live Schistosomes for Proteomic Analysis: A Rational Approach to Select Vaccine Candidates

    Get PDF
    Adult schistosome parasites can reside in the host bloodstream for decades surrounded by components of the immune system. It was originally proposed that their survival depended on the secretion of an inert bilayer, the membranocalyx, to protect the underlying plasma membrane from attack. We have investigated whether any proteins were exposed on the surface of live worms using incubation with selected hydrolases, in combination with mass spectrometry to identify released proteins. We show that a small number of parasite proteins are accessible to the enzymes and so could represent constituents of the membranocalyx. We also identified several proteins acquired by the parasite on contact with host cells. In addition, components of the cytolytic complement pathway were detected, but these appeared not to harm the worm, indicating that some of its own surface proteins could inhibit the lytic pathway. We suggest that, collectively, the ‘superficial’ parasite proteins may provide good candidates for a schistosome vaccine

    Breast cancer risk factors in relation to breast density (United States)

    Get PDF
    OBJECTIVES: Evaluate known breast cancer risk factors in relation to breast density. METHODS: We examined factors in relation to breast density in 144,018 New Hampshire (NH) women with at least one mammogram recorded in a statewide mammography registry. Mammographic breast density was measured by radiologists using the BI-RADS classification; risk factors of interest were obtained from patient intake forms and questionnaires. RESULTS: Initial analyses showed a strong inverse influence of age and body mass index (BMI) on breast density. In addition, women with late age at menarche, late age at first birth, premenopausal women, and those currently using hormone therapy (HT) tended to have higher breast density, while those with greater parity tended to have less dense breasts. Analyses stratified on age and BMI suggested interactions, which were formally assessed in a multivariable model. The impact of current HT use, relative to nonuse, differed across age groups, with an inverse association in younger women, and a positive association in older women (p < 0.0001 for the interaction). The positive effects of age at menarche and age at first birth, and the inverse influence of parity were less apparent in women with low BMI than in those with high BMI (p = 0.04, p < 0.0001 and p = 0.01, respectively, for the interactions). We also noted stronger positive effects for age at first birth in postmenopausal women (p = 0.004 for the interaction). The multivariable model indicated a slight positive influence of family history of breast cancer. CONCLUSIONS: The influence of age at menarche and reproductive factors on breast density is less evident in women with high BMI. Density is reduced in young women using HT, but increased in HT users of age 50 or more

    Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

    Get PDF
    Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists

    Mechanics of the IL2RA Gene Activation Revealed by Modeling and Atomic Force Microscopy

    Get PDF
    Transcription implies recruitment of RNA polymerase II and transcription factors (TFs) by DNA melting near transcription start site (TSS). Combining atomic force microscopy and computer modeling, we investigate the structural and dynamical properties of the IL2RA promoter and identify an intrinsically negative supercoil in the PRRII region (containing Elf-1 and HMGA1 binding sites), located upstream of a curved DNA region encompassing TSS. Conformational changes, evidenced by time-lapse studies, result in the progressive positioning of curvature apex towards the TSS, likely facilitating local DNA melting. In vitro assays confirm specific binding of the General Transcription Factors (GTFs) TBP and TFIIB over TATA-TSS position, where an inhibitory nucleosome prevented preinitiation complex (PIC) formation and uncontrolled DNA melting. These findings represent a substantial advance showing, first, that the structural properties of the IL2RA promoter are encoded in the DNA sequence and second, that during the initiation process DNA conformation is dynamic and not static
    corecore