1,043 research outputs found
Letter processing in upright bigrams predicts reading fluency variations in children
Fluent reading is an important milestone in education, but we lack a clear understanding of why children vary so widely in attaining it. Language-related factors such as rapid automatized naming (RAN) and phonological awareness have been identified as important factors that explain reading fluency. However, whether any aspects of visual orthographic processing also explain reading fluency beyond phonology is unclear. To investigate these issues, we tested primary school children (n = 68) on four tasks: two reading fluency tasks (word reading and passage reading), a RAN task to measure naming speed, and a visual search task using letters and bigrams. Bigram processing in visual search was accurately explained by single-letter discrimination, and error patterns were unrelated to fluency or bigram frequency, ruling out the contribution of specialized bigram detectors. As expected, the RAN score was strongly correlated with reading fluency. Importantly, there was a highly specific association between reading fluency and upright bigram processing in visual search. This association was specific to upright but not inverted bigrams and to bigrams with normal but not large letter spacing. It was explained by increased letter discrimination across bigrams and reduced interactions between letters within bigrams. Thus, fluent reading is accompanied by specialized changes in letter processing within bigrams
Recommended from our members
Measurement of prompt D0, D+, D*+, and DS+ production in p–Pb collisions at √sNN = 5.02 TeV
The measurement of the production of prompt D0, D+, D*+, and DS+ mesons in proton–lead (p–Pb) collisions at the centre-of-mass energy per nucleon pair of sNN = 5.02 TeV, with an integrated luminosity of 292 ± 11 μb−1, are reported. Differential production cross sections are measured at mid-rapidity (−0.96 < ycms< 0.04) as a function of transverse momentum (pT) in the intervals 0 < pT< 36 GeV/c for D0, 1 < pT< 36 GeV/c for D+ and D*+, and 2 < pT< 24 GeV/c for D+ mesons. For each species, the nuclear modification factor RpPb is calculated as a function of pT using a proton-proton (pp) ref- erence measured at the same collision energy. The results are compatible with unity in the whole pT range. The average of the non-strange D mesons RpPb is compared with theoretical model predictions that include initial-state effects and parton transport model predictions. The pT dependence of the D0, D+, and D*+ nuclear modification factors is also reported in the interval 1 < pT< 36 GeV/c as a function of the collision centrality, and the central-to-peripheral ratios are computed from the D-meson yields measured in different centrality classes. The results are further compared with charged-particle measurements and a similar trend is observed in all the centrality classes. The ratios of the pT-differential cross sections of D0, D+, D*+, and DS+ mesons are also reported. The DS+ and D+ yields are compared as a function of the charged-particle multiplicity for several pT intervals. No modification in the relative abundances of the four species is observed with respect to pp collisions within the statistical and systematic uncertainties. [Figure not available: see fulltext.]
Recommended from our members
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at √sNN = 5.02 TeV
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval −1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.
Recommended from our members
Measurement of Λ (1520) production in pp collisions at √s=7TeV and p–Pb collisions at √sNN=5.02TeV
The production of the Λ (1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s=7TeV and in p–Pb collisions at sNN=5.02TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ (1520) → pK - and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p–Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, KS0, p, Λ) describes the shape of the Λ (1520) transverse momentum distribution up to 3.5GeV/c in p–Pb collisions. In the framework of this model, this observation suggests that the Λ (1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ (1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p–Pb collisions on the Λ (1520) yield
Implications of a High-Mass Diphoton Resonance for Heavy Quark Searches
Heavy vector-like quarks coupled to a scalar will induce a coupling of
this scalar to gluons and possibly (if electrically charged) photons. The decay
of the heavy quark into , with being a Standard Model quark, provides,
if kinematically allowed, new channels for heavy quark searches. Inspired by
naturalness considerations, we consider the case of a vector-like partner of
the top quark. For illustration, we show that a singlet partner can be searched
for at the 13TeV LHC through its decay into a scalar resonance in the
final states, especially if the diphoton branching ratio of
the scalar is further enhanced by the contribution of non coloured
particles. We then show that conventional heavy quark searches are also
sensitive to this new decay mode, when decays hadronically, by slightly
tightening the current selection cuts. Finally, we comment about the
possibility of disentangling, by scrutinising appropriate kinematic
distributions, heavy quark decays to from other standard decay modes.Comment: 8 pages, 3 figures and 1 table; v3: typos fixed. Matches published
versio
Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane
We investigate the influences of the excluded volume of molecules on
biochemical reaction processes on 2-dimensional surfaces using a model of
signal transduction processes on biomembranes. We perform simulations of the
2-dimensional cell-based model, which describes the reactions and diffusion of
the receptors, signaling proteins, target proteins, and crowders on the cell
membrane. The signaling proteins are activated by receptors, and these
activated signaling proteins activate target proteins that bind autonomously
from the cytoplasm to the membrane, and unbind from the membrane if activated.
If the target proteins bind frequently, the volume fraction of molecules on the
membrane becomes so large that the excluded volume of the molecules for the
reaction and diffusion dynamics cannot be negligible. We find that such
excluded volume effects of the molecules induce non-trivial variations of the
signal flow, defined as the activation frequency of target proteins, as
follows. With an increase in the binding rate of target proteins, the signal
flow varies by i) monotonically increasing; ii) increasing then decreasing in a
bell-shaped curve; or iii) increasing, decreasing, then increasing in an
S-shaped curve. We further demonstrate that the excluded volume of molecules
influences the hierarchical molecular distributions throughout the reaction
processes. In particular, when the system exhibits a large signal flow, the
signaling proteins tend to surround the receptors to form receptor-signaling
protein clusters, and the target proteins tend to become distributed around
such clusters. To explain these phenomena, we analyze the stochastic model of
the local motions of molecules around the receptor.Comment: 31 pages, 10 figure
A Limited Role for Suppression in the Central Field of Individuals with Strabismic Amblyopia.
yesBackground: Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia
typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally
believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and
strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a
highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is
equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is
crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that
suppression exists when it does not.
Methodology/Results: Here we present the results of an experiment conducted with a new method to examine the
prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70%) showed no
evidence whatsoever for suppression and in the three individuals who did (30%), the depth and extent of suppression was
small.
Conclusions: Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia
than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our
results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more
generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with
strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent
evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual
normals, performance with two eyes is better than with the better eye alone in these individuals
Binocular summation and other forms of non-dominant eye contribution in individuals with strabismic amblyopia during habitual viewing
YesAdults with amblyopia ('lazy eye'), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes' field locations compared to 8.8% of normals'. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals
Recommended from our members
Inclusive J/ψ production at mid-rapidity in pp collisions at √s = 5.02 TeV
Inclusive J/ψ production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (|y| < 0.9) in the dielectron decay channel down to zero transverse momentum pT, using a data sample corresponding to an integrated luminosity of Lint = 19.4 ± 0.4 nb−1. The measured pT-integrated inclusive J/ψ production cross sec- tion is dσ/dy = 5.64 ± 0.22(stat.) ± 0.33(syst.) ± 0.12(lumi.) μb. The pT-differential cross section d2σ/dpTdy is measured in the pT range 0–10 GeV/c and compared with state-of- the-art QCD calculations. The J/ψ 〈pT〉 and 〈pT2〉 are extracted and compared with results obtained at other collision energies. [Figure not available: see fulltext.]
Recommended from our members
Measurement of charged jet cross section in pp collisions at s =5.02 TeV
The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of
- …
