22,302 research outputs found
Two dimensional XXZ-Ising model on square-hexagon lattice
We study a two dimensional XXZ-Ising on square-hexagon (4-6) lattice with
spin-1/2. The phase diagram of the ground state energy is discussed, shown two
different ferrimagnetic states and two type of antiferromagnetic states, beside
of a ferromagnetic state. To solve this model, it could be mapped into the
eight-vertex model with union jack interaction term. Imposing exact solution
condition we find the region where the XXZ-Ising model on 4-6 lattice have
exact solutions with one free parameter, for symmetric eight-vertex model
condition. In this sense we explore the properties of the system and analyze
the competition of the interaction parameters providing the region where it has
an exact solution. However the present model does not satisfy the \textit{free
fermion} condition, unless for a trivial situation. Even so we are able to
discuss their critical points region, when the exactly solvable condition is
ignored.Comment: 5 pages, 5 figure
Antibonding Ground state of Adatom Molecules in Bulk Dirac Semimetals
The ground state of the diatomic molecules in nature is inevitably bonding,
and its first excited state is antibonding. We demonstrate theoretically that,
for a pair of distant adatoms placed buried in three-dimensional-Dirac
semimetals, this natural order of the states can be reversed and an antibonding
ground state occurs at the lowest energy of the so-called bound states in the
continuum. We propose an experimental protocol with the use of a scanning
tunneling microscope tip to visualize the topographic map of the local density
of states on the surface of the system to reveal the emerging physics
Quantum phase transition triggering magnetic BICs in graphene
Graphene hosting a pair of collinear adatoms in the phantom atom
configuration has pseudogap with cubic scaling on energy,
which leads to the appearance of
spin-degenerate bound states in the continuum (BICs) [Phys. Rev. B 92, 045409
(2015)]. In the case when adatoms are locally coupled to a single carbon atom
the pseudogap scales linearly with energy, which prevents the formation of
BICs. In this Letter, we explore the effects of non-local coupling
characterized by the Fano factor of interference tunable by changing
the slope of the Dirac cones in the graphene band-structure. We demonstrate
that three distinct regimes can be identified: i) for (critical
point) a mixed pseudogap appears
yielding a phase with spin-degenerate BICs; ii) near when
the system undergoes a quantum phase
transition in which the new phase is characterized by magnetic BICs and iii) at
a second critical value the cubic scaling of the pseudogap with
energy characteristic to the phantom atom
configuration is restored and the phase with non-magnetic BICs is recovered.
The phase with magnetic BICs can be described in terms of an effective
intrinsic exchange field of ferromagnetic nature between the adatoms mediated
by graphene monolayer. We thus propose a new type of quantum phase transition
resulting from the competition between the states characterized by
spin-degenerate and magnetic BICs
The Fermi level effect in III-V intermixing: The final nail in the coffin?
Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 81, 2179 (1997) and may be found at
Catching the Bound States in the Continuum of a Phantom Atom in Graphene
We explore theoretically the formation of bound states in the continuum
(BICs) in graphene hosting two collinear adatoms situated at different sides of
the sheet and at the center of the hexagonal cell, where a phantom atom of a
fictitious lattice emulates the six carbons of the cell. We verify that in this
configuration the local density of states (LDOS) near the Dirac points exhibits
two characteristic features: i) the cubic dependence on energy instead of the
linear one for graphene as found in New J. Phys. 16, 013045 (2014) and ii)
formation of BICs as aftermath of a Fano destructive interference assisted by
the Coulomb correlations in the adatoms. For the geometry where adatoms are
collinear to carbon atoms, we report absence of BICs
AMBER/VLTI observations of the B[e] star MWC 300
Aims. We study the enigmatic B[e] star MWC 300 to investigate its disk and
binary with milli-arcsecond-scale angular resolution. Methods. We observed MWC
300 with the VLTI/AMBER instrument in the H and K bands and compared these
observations with temperature-gradient models to derive model parameters.
Results. The measured low visibility values, wavelength dependence of the
visibilities, and wavelength dependence of the closure phase directly suggest
that MWC 300 consists of a resolved disk and a close binary. We present a model
consisting of a binary and a temperature-gradient disk that is able to
reproduce the visibilities, closure phases, and spectral energy distribution.
This model allows us to constrain the projected binary separation (~4.4 mas or
~7.9 AU), the flux ratio of the binary components (~2.2), the disk temperature
power-law index, and other parameters.Comment: 4 pages, 1 figure, accepted by A&
Position-dependent-mass; Cylindrical coordinates, separability, exact solvability, and PT-symmetry
The kinetic energy operator with position-dependent-mass in cylindrical
coordinates is obtained. The separability of the corresponding Schr\"odinger
equation is discussed within radial cylindrical mass settings. Azimuthal
symmetry is assumed and spectral signatures of various z-dependent interaction
potentials (Hermitian and non-Hermitian PT-symmetric) are reported.Comment: 16 page
- …