37,593 research outputs found

    Intrinsic bounds of a two-qudit random evolution

    Full text link
    We investigate entangled qudits evolving under random, local SU(d)SU(d) operations and demonstrate that this evolution is constrained by intrinsic bounds, showing robust features of two-qudit entangled states that can be useful for fault tolerant implementations of phase gates. Our analytical results are supported by numerical simulations and confirmed by experiments on liquid-state nuclear magnetic resonance qubits.Comment: 5 pages, 4 figure

    Quantum entanglement in the neighborhood of pseudo-transition for a spin-1/2 Ising-XYZ diamond chain

    Full text link
    Recently has been observed for some one-dimensional models that exhibit unexpected pseudo-transitions and quasi-phases. This pseudo-transition resembles a first- and second-order phase transition simultaneously. One of those models is the spin-1/2 Ising-XYZ diamond chain, composed of Ising spin particles at the nodal sites and the Heisenberg spin particles at the interstitial sites. Where we assume Ising-type interaction between the nodal and interstitial sites, the Heisenberg-type interaction between interstitial sites, and with an external magnetic field applied along the z-axis. This model presents an exact analytical solution applying the transfer matrix technique, which shows 3 phases at zero temperature in the vicinity of pseudo-transition. The pseudo-transition separates quasi-phases, these quasi-phases still hold at a finite temperature most of the pattern configurations of a true phase at zero temperature. Here we study the quantum entanglement of pair spin particles in the quasi-phase regions, which can be measured through the concurrence. Then we observe an unexpected behavior in the concurrence, that is below pseudo-critical temperature the concurrence remains almost constant up to pseudo-critical temperature, but above the pseudo-critical temperature, the concurrence behaves as for the standard one-dimensional spin models. Further, we consider the entropy behavior of the system, below pseudo-critical temperature the entropy becomes almost null, while above pseudo-critical temperature the system exhibits standard behavior as for ordinary one-dimensional spin models.Comment: 5 pages, 2 figure

    A Detection Method for Tropical Race 4 of the Banana Pathogen Fusarium oxysporum f. sp. cubense

    Get PDF
    Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Fusarium wilt, the devastating disease that ruined the ‘Gros Michel’ (AAA)-based banana production in the first half of the 20th century. The occurrence of a new variant in Southeast Asia that overcomes the resistance in Cavendish clones such as ‘Grand Naine’ (AAA) is a major concern to current banana production worldwide. The threat posed by this new variant, called tropical race 4 (TR4), may be overcome by the introduction of resistant cultivars. However, the identification of new resistant sources or breeding for resistance is a long-term effort. Currently, the only option to control the disease is to avoid or reduce the spread of the pathogen by eradication of infected plants and isolation of infested plantations. This requires sensitive and highly specific diagnostics that enable early detection of the pathogen. A two-locus database of DNA sequences, from over 800 different isolates from multiple formae speciales of F. oxysporum, was used to develop a molecular diagnostic tool that specifically detects isolates from the vegetative compatibility group (VCG) 01213, which encompasses the Foc TR4 genotype. This diagnostic tool was able to detect all Foc TR4 isolates tested, while none of the Foc isolates from 19 VCGs other than 01213 showed any reaction. In addition, the developed diagnostic tool was able to detect Foc TR4 when using DNA samples from different tissues of ‘Grand Naine’ plants inoculated with TR4 isolate

    Experimental realization of the Yang-Baxter Equation via NMR interferometry

    Get PDF
    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.Comment: 10 pages and 6 figure
    corecore