199 research outputs found

    A reliable measure of similarity based on dependency for short time series: an application to gene expression networks

    Get PDF
    Abstract Background Microarray techniques have become an important tool to the investigation of genetic relationships and the assignment of different phenotypes. Since microarrays are still very expensive, most of the experiments are performed with small samples. This paper introduces a method to quantify dependency between data series composed of few sample points. The method is used to construct gene co-expression subnetworks of highly significant edges. Results The results shown here are for an adapted subset of aSaccharomyces cerevisiaegene expression data set with low temporal resolution and poor statistics. The method reveals common transcription factors with a high confidence level and allows the construction of subnetworks with high biological relevance that reveals characteristic features of the processes driving the organism adaptations to specific environmental conditions. Conclusion Our method allows a reliable and sophisticated analysis of microarray data even under severe constraints. The utilization of systems biology improves the biologists ability to elucidate the mechanisms underlying celular processes and to formulate new hypotheses

    Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize <it>Aspergillus fumigatus CRZ1 </it>homologue, AfCrzA. Here, we investigate which pathways are influenced by <it>A. fumigatus </it>AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of <it>A. fumigatus </it>wild type and <it>ΔAfcrzA </it>mutant strains.</p> <p>Results</p> <p>We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively). Decreased mRNA abundance in the <it>ΔcrzA </it>was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in <it>A. fumigatus </it>increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl<sub>2 </sub>25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related <it>A. nidulans </it>AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride.</p> <p>Conclusion</p> <p>We have performed a transcriptional profiling analysis of the <it>A. fumigatus ΔAfcrzA </it>mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin activity. Concomitantly with <it>A. fumigatus AfrcnA </it>molecular analysis, we decided to exploit the conserved features of <it>A. nidulans </it>calcineurin system and investigated the <it>A. nidulans </it>AnRcnA homologue. <it>A. nidulans </it>AnRcnA mutation is suppressing CnaA mutation and it is responsible for modulating the calcineurin activity and mRNA accumulation of genes encoding calcium transporters.</p

    Glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells

    Get PDF
    ABSTRACT The mild analgesic drug acetaminophen (AAP) induces severe hepatic injury when taken at excessive doses. Recent evidence shows that the initial form of damage is through apoptosis, but this fails to go to completion and degenerates into necrosis. The aim of this study was to elucidate the mechanism through which AAP induces apoptosis using human HuH7 hepatoma cells as an in vitro model system to investigate the initial phase of AAP-induced hepatic injury. AAP-induced apoptosis in HuH7 cells as evidenced by chromatin condensation was preceded by the translocation of Bax to mitochondria and the cytoplasmic release of the proapoptotic factors cytochrome c and Smac/DIABLO. A concomitant loss of mitochondrial membrane potential occurred. Activation of the mitochondrial pathway of apoptosis led to the activation of execution caspases-3 and -7. AAP-induced apoptosis and cell death was blocked by inhibitors of caspases but not by inhibitors of calpains, cathepsins, and serine proteases. Apoptosis was unaffected by inhibitors of the mitochondrial permeability transition pore and by inhibitors of Jun NH 2 -terminal kinases, p38 mitogen-activated protein kinase, or mitogen-activated protein kinase kinase 1/2. However, pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) delayed and decreased the extent of AAP-induced apoptosis. In comparison, endoplasmic reticulum stress-induced but not prooxidant-induced apoptosis of HuH7 cells was sensitive to GSK-3 inhibition. It is concluded that AAP-induced apoptosis involves the mitochondrial pathway of apoptosis that is mediated by GSK-3 and most likely initiated through an endoplasmic reticulum stress response. The mild analgesic acetaminophen (paracetamol, AAP) remains the commonest cause of acute liver failure in the United States and other parts of the world as a result of accidental or deliberate overdose Many of the histochemical and biochemical features of the late stages of AAP toxicity, particularly after high doses, support the conclusion that AAP induces hepatocellular necrosi

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81

    Endoscopic full-thickness resection for T1 early rectal cancer : a case series and video report

    Get PDF
    Background and study aims Endoscopic treatment of malignant colorectal polyps is often challenging, especially for early rectal cancer (ERC) localized close to the dentate line. Conversely, the surgical approach may result in temporary or definitive stoma and in frequent post-surgical complications. The Full-Thickness Resection Device (FTRD (R)) System (Ovesco Endoscopy, Tubingen, Germany) is a novel system that, besides having other indications, appears to be promising for wall-thickness excision of intestinal T1 carcinoma following incomplete endoscopic resection. However, follow-up data on patients treated with this device are scarce, particularly for ERC. Patients and methods Six consecutive patients with incomplete endoscopic resection of T1-ERC were treated with the FTRD and their long-term outcomes were evaluated based on a detailed clinical and instrumental assessment. Results The endoscopic en bloc full-thickness resection was technically feasible in all patients. The histopathologic analysis showed a complete endoscopic resection in all cases, and a full-thickness excision in four. Neither complications, nor disease recurrence were observed during the 1-year follow-up period. Conclusions The FTRD System is a promising tool for treating ERC featuring a residual risk of disease recurrence after incomplete endoscopic mucosal resection in patients unfit for surgery or refusing a surgical approach

    Use of phosphorus fertilization and mycorrhization as strategies for reducingcopper toxicity in young grapevines.

    Get PDF
    Established vineyard soils may have high copper (Cu) contents due to the ongoing foliar applications of copper-based fungicides. In viticulture, the replacement of old vineyards with new vines is common practice, however,limited by Cu excess in soil and its toxicity to young grapevines. The application of phosphorus (P) and ar-buscular mycorrhizal fungi (AMF) inoculation are potential strategies to reduce Cu toxicity to young grapevines.This study aimed to assess the effects of phosphorus fertilization and AMF (Rhizophagus clarus) inoculation ongrowth and physiological parameters of young grapevines grown in soil with high Cu content. The experimentwas conducted in a greenhouse, where natural grassland soil was artificially contaminated by the addition of60 mg kg&#8722;1Cu. The soils were treated with and without AMF inoculation, combined with additions of 0, 40 and100 mg P kg&#8722;1. After 90 days of cultivation, grapevine plants were assessed for chlorophyllafluorescence,photosynthetic pigment contents, superoxide dismutase (SOD) activity, plant height, plant biomass, and con-centrations of Cu and P in roots and shoots. Phosphorus fertilization promoted increases in seedling growth(related to the increase of total P concentration in roots and shoots), soluble Pi concentration in leaves, and thequantum yield of the PSII (YII) (associated with a reduction in shoot Cu concentration). The AMF inoculationincreased the concentration of P in roots and shoots, soluble Pi in leaves and electron transport rate (ETR).Phosphorus fertilization and inoculation of grapevines with AMF are strategies capable of reducing Cu toxicity inyoung grapevines

    In the matter of the request of Liberty Mutual Fire Insurance Company, a Massachusetts domestic stock insurance company, to redomesticate to the state of Wisconsin

    Get PDF
    Submitted by Nuzia Santos ([email protected]) on 2018-08-24T16:36:28Z No. of bitstreams: 1 Phosphatidyl Inositol 3 Kinase-Gamma Balances.pdf: 10035595 bytes, checksum: 5a61fb2c618990d4314d36db3868ee2e (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2018-08-24T16:44:27Z (GMT) No. of bitstreams: 1 Phosphatidyl Inositol 3 Kinase-Gamma Balances.pdf: 10035595 bytes, checksum: 5a61fb2c618990d4314d36db3868ee2e (MD5)Made available in DSpace on 2018-08-24T16:44:27Z (GMT). No. of bitstreams: 1 Phosphatidyl Inositol 3 Kinase-Gamma Balances.pdf: 10035595 bytes, checksum: 5a61fb2c618990d4314d36db3868ee2e (MD5) Previous issue date: 2018Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Vírus Respiratórios e do Sarampo. Rio de Janeiro, RJ, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Fisiologia e Biofísica. Laboratório de Imunologia e Mecânica Pulmonar. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brazil / UNIFRANZ. Coordinación Nacional de Investigación. La Paz, Bolivia.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Belo Horizonte, MG, BrazilUniversidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade de São Paulo. Departamento de Farmacologia. Laboratório de Inflamação e Dor. Universidade de São Paulo. Ribeirão Preto, SP, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Vírus Respiratórios e do Sarampo. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Fundação Oswaldo Cruz. Instituto René Rachou. Laboratório de Imunologia de Doenças Virais. Belo Horizonte, MG, BrazilUniversidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de RNA de Interferência Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Vírus Respiratórios e do Sarampo. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto René Rachou. Laboratório de Imunologia de Doenças Virais. Belo Horizonte, MG, BrazilUniversidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Fisiologia e Biofísica. Laboratório de Imunologia e Mecânica Pulmonar. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection

    GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome.

    Get PDF
    CD8(+) T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8(+) T effector memory cells (T(EM)) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8(+) T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8(+) T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMK(high) CD8(+) T(EM) in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics
    corecore