3,206 research outputs found

    The molecular envelope of CRL 618: A new model based on Herschel/HIFI observations

    Full text link
    We study the physical properties and molecular excitation of the different warm gas components found in the protoplanetary nebula CRL 618. We revise our previous Herschel/HIFI observations, which consist of several 12CO and 13CO lines in the far-infrared/sub-mm band. These data have been re-analyzed in detail by improving calibration, the signal-to-noise-ratio, and baseline substraction. We identify the contributions of the different nebular components to the line profiles. We have used a spatio-kinematical model to better constrain the temperature, density, and kinematics of the molecular components probed by the improved CO observations. The 12CO and 13CO J=16-15, J=10-9, and J=6-5 transitions are detected in this source. The line profiles present a composite structure showing spectacular wings in some cases, which become dominant as the energy level increases. Our analysis of the high-energy CO emission with the already known low-energy J=2-1 and J=1-0 lines confirms that the high-velocity component, or fast bipolar outflow, is hotter than previously estimated with a typical temperature of ~300 K. This component may then be an example of a very recent acceleration of the gas by shocks that has not yet cooled down. We also find that the dense central core is characterized by a very low expansion velocity, ~5 km/s, and a strong velocity gradient. We conclude that this component is very likely to be the unaltered circumstellar layers that are lost in the last AGB phase, where the ejection velocity is particularly low. The physical properties of the other two nebular components, the diffuse halo and the double empty shell, more or less agrees with the estimations derived in previous models.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 3 figure

    Mapping the circumstellar SiO maser emission in R Leo

    Full text link
    The study of the innermost circumstellar layers around AGB stars is crucial to understand how these envelopes are formed and evolve. The SiO maser emission occurs at a few stellar radii from the central star, providing direct information on the stellar pulsation and on the chemical and physical properties of these regions. Our data also shed light on several aspects of the SiO maser pumping theory that are not well understood yet. We aim to determine} the relative spatial distribution of the 43 GHz and 86 GHz SiO maser lines in the oxygen-rich evolved star R Leo. We have imaged with milliarcsecond resolution, by means of Very Long Baseline Interferometry, the 43 GHz (28SiO v=1, 2 J=1-0 and 29SiO v=0 J=1-0) and 86 GHz (28SiO v=1 J=2-1 and 29SiO v=0 J=2-1) masing regions. We confirm previous results obtained in other oxygen-rich envelopes. In particular, when comparing the 43 GHz emitting regions, the 28SiO v=2 transition is produced in an inner layer, closer to the central star. On the other hand, the 86 GHz line arises in a clearly farther shell. We have also mapped for the first time the 29SiO v=0 J=1-0 emission in R Leo. The already reported discrepancy between the observed distributions of the different maser lines and the theoretical predictions is also found in R Leo.Comment: accepted for publication in A&

    Homogeneous hydrodynamics of a collisional model of confined granular gases

    Get PDF
    The hydrodynamic equation governing the homogeneous time evolution of the temperature in a model of confined granular gas is studied by means of the Enskog equation. The existence of a normal solution of the kinetic equation is assumed as a condition for hydrodynamics. Dimensional analysis implies a scaling of the distribution function that is used to determine it in the first Sonine approximation, with a coefficient that evolves in time through its dependence on the temperature. The theoretical predictions are compared with numerical results obtained by the direct simulation Monte Carlo method, and a good agreement is found. The relevance of the normal homogeneous distribution function to derive inhomogeneous hydrodynamic equations, for instance using the Champan-Enskog algorithm, is indicated.Comment: Accepted in Phys. Rev.

    Hydrodynamics for a model of a confined quasi-two-dimensional granular gas

    Get PDF
    The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed

    Memory effects in the relaxation of a confined granular gas

    Full text link
    The accuracy of a model to describe the horizontal dynamics of a confined quasi-two-dimensional system of inelastic hard spheres is discussed by comparing its predictions for the relaxation of the temperature in an homogenous system with molecular dynamics simulation results for the original system. A reasonably good agreement is found. Next, the model is used to investigate the peculiarities of the nonlinear evolution of the temperature when the parameter controlling the energy injection is instantaneously changed while the system was relaxing. This can be considered as a non-equilibrium generalization of the Kovacs effect. It is shown that, in the low density limit, the effect can be accurately described by using a simple kinetic theory based on the first Sonine approximation for the one-particle distribution function. Some possible experimental implications are indicated

    Preliminary results on SiO v=3 J=1-0 maser emission from AGB stars

    Full text link
    We present the results of SiO maser observations at 43GHz toward two AGB stars using the VLBA. Our preliminary results on the relative positions of the different J=1-0 SiO masers (v=1,2 and 3) indicate that the current ideas on SiO maser pumping could be wrong at some fundamental level. A deep revision of the SiO pumping models could be necessary.Comment: poster, 2 pages, 2 figures, Proc. IAU Symp. 287 "Cosmic Masers: from OH to H0", R.S. Booth, E.M.L. Humphreys and W.H.T. Vlemmings, ed
    corecore