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Hydrodynamics for a model of a confined quasi-two-dimensional granular gas
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The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard
spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog
method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport
coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity
parameter involved in the definition of the model. Also an Euler transport term contributing to the energy
transport equation is considered. This term arises from the gradient expansion of the rate of change of the
temperature due to the inelasticity of collisions, and it vanishes for elastic systems. The hydrodynamic equations
are particularized for the relevant case of a system in the homogeneous steady state. The relationship with
previous works is analyzed.
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I. INTRODUCTION

Granular gases frequently exhibit flows similar to those of
normal gases, and for practical purposes these flows are often
successfully described by phenomenological hydrodynamic
equations [1,2]. The basis for such macroscopic balance equa-
tions are in the more fundamental statistical mechanics and
kinetic theory descriptions of granular gases. In this context,
the idealized model of a granular gas as a monodisperse
system of smooth inelastic hard spheres or disks with a
constant coefficient of normal restitution has been employed
extensively [3,4]. For this system, hydrodynamic equations
to Navier-Stokes order have been derived with expressions for
the parameters appearing in them. Starting from the Boltzmann
equation for inelastic hard spheres or disks [5,6] and also from
the revised Enskog theory [7], the transport coefficients have
been evaluated by using an extension of the Chapman-Enskog
method. The predictions from the Boltzmann equation have
been found to be in good agreement with the values obtained
by particle simulation methods in the dilute limit [6]. Using
linear-response theory, formal Green-Kubo-like expressions
for the transport coefficients have been derived for low-density
granular gases [8,9], and also for arbitrary densities [10,11].
The latter are not tied to any specific kinetic equation, but
their explicit evaluation requires the introduction of some
approximations [10].

In normal fluids, nonequilibrium steady states can be
generated by imposing appropriate boundary conditions.
Moreover, the control of the boundary conditions permits
the gradients of the hydrodynamic fields to remain small,
so that the steady state can be studied in the Navier-Stokes
domain of the hydrodynamic equations. In granular gases,
a new class of steady states shows up. In this new class
of states, stationarity is reached by an autonomous balance
between external constraints and the internal cooling. A typical
example is a system under shear flow. There is viscous heating
due to the work done on the system at the boundaries. If
the system is a granular gas, stationarity is possible when the
viscous heating is compensated by the dissipation due to the
inelasticity of collisions. The steady state has uniform density
and temperature, and a flow velocity with a linear profile. Due
to its macroscopic simplicity, it has been studied extensively

[12–16]. This particular steady state exemplifies two features
that are characteristic of hydrodynamic steady states of
granular gases. First, to compensate the energy dissipation
in collisions, the system must develop spatial gradients gener-
ating an energy flux, i.e., it must be inhomogeneous. Second,
the energy balance leads to a coupling between gradients and
inelasticity, so that the limit of small gradients also implies
the quasielastic limit. Even more, the above coupling is often
nonanalytic [14], implying that the macroscopic description
of the steady state can never be brought within the range of
validity of the Navier-Stokes hydrodynamics in those cases.

An interesting alternative to the kind of steady states of
granular gases described above has being attracting increasing
interest in recent years [17–21]. A granular gas is confined
to a quasi-two-dimensional geometry by placing it between
two large parallel plates in the horizontal directions, while
the distance between the two plates is smaller than two
particle diameters, so the system is actually a monolayer
since the particles cannot jump on one another. The container
is vertically vibrated to inject energy through the collisions
of the particles with the top and bottom walls. The two-
dimensional dynamics of the system when seen from above
is considered. It has been observed that it corresponds to that
of a two-dimensional granular fluid. Moreover, the system
remains homogeneous under a large range of parameters,
and it eventually reaches a steady homogeneous state. Very
recently [22], an idealized model has been proposed trying
to describe the horizontal dynamics in the above experiment,
assuming that the particles are smooth inelastic hard spheres.
Then, the projections of the particles on the horizontal plane
are described as inelastic hard disks, whose collision rule
is modified in order to incorporate a mechanism to transfer
the energy injected vertically to the horizontal degrees of
freedom. In this sense, it can be classified as a collisional
model. The new collision rule has a constant coefficient of
normal restitution α, and it contains a characteristic velocity
� that is added to each particle in a collision so that the
normal component of the relative velocity is increased by 2�

in the collision, independently of the effect of the coefficient of
normal restitution. The methods of nonequilibrium statistical
mechanics and kinetic theory developed for inelastic hard
spheres and disks [23,24] have been applied to the model [25].
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The system exhibits a homogeneous steady state whose
properties have been analyzed in detail. Also, the Boltzmann
equation and the revised Enskog theory have been formulated.
Moreover, the existence of homogeneous hydrodynamics has
been analyzed [26]. There is a time regime over which
the granular temperature of a homogeneous system obeys a
closed (hydrodynamic) equation. In the long-time limit, the
temperature tends to its steady value. Moreover, it has been
shown that the homogeneous relaxation of the temperature of
the system presents nonlinear memory effects [27], which can
be considered as reminiscent of the Kovacs memory effect
occurring in the relaxation toward equilibrium of molecular
fluids [28]. The homogeneous hydrodynamics as well as the
Kovacs-like effect have also been observed in a model of a
homogeneously driven granular gas [29,30].

The aim of this paper is to derive the hydrodynamic
equations to Navier-Stokes order for a dilute confined granular
gas as described by the collisional model proposed by Brito
et al [22]. The starting point will be the Boltzmann kinetic
equation, and the method to be used is a generalization of
the Chapman-Enskog procedure. The derivation is based on
a special “normal” solution of the kinetic equation expanded
to low order in the gradients of the hydrodynamic fields. The
zeroth-order approximation is not a local version, both in space
and time, of the distribution function of the homogeneous
steady state, but it is based on the distribution describing the
homogeneous hydrodynamics. This is an important conceptual
and practical difference with the standard application of the
Chapman-Enskog method to molecular systems. Of course, it
is also possible to consider states close to a stationary one and
carry out, for instance, linear-response theory around that state
to compute transport properties associated with that particular
state. The ranges of applicability of the results obtained by both
methods are clearly different, although there can be a common
limit for the simultaneous validity of both. In particular, the
Navier-Stokes shear viscosity of a confined dilute granular gas
described by the collisional model in a stationary and uniform
Couette flow has been computed by employing linear-response
theory [31]. The results obtained here for the shear viscosity
will be related with those reported in Ref. [31].

The remainder of this paper is organized as follows. In
the next section, the Boltzmann equation for the model is
given, and the exact balance equations for mass, momentum,
and energy are derived from it. The Chapman-Enskog method
for obtaining a “normal” solution of the kinetic equation as
an expansion in the gradients of the hydrodynamic fields
is described. Results through Navier-Stokes order for the
pressure tensor and the heat flux are given. The associated
transport coefficients are shown to obey a complete set of first-
order differential equations. Some details of the calculations
are given in Appendixes A and B, while the explicit results for
the transport coefficients are presented in Sec. III. The theory
is not restricted to any range of values of the coefficient of
normal restitution α nor of the characteristic velocity of the
model �, other that 0 < α � 1 and � > 0. The contributions
to the transport equations coming from the energy sink term
due to the nonconservation of kinetic energy in collisions are
also discussed. It is shown that there is a first order in the
gradient contribution, i.e., an Euler term, which is proportional
to the divergence of the velocity field. The associated transport

coefficient is evaluated explicitly. Appendix C provides a
sketch of the calculation of this coefficient. The Euler term does
not exist in molecular systems, and it is peculiar to inelastic
collisions [32–34], although it vanishes in the low-density limit
of granular gases composed of smooth inelastic hard spheres
or disks [5]. The expressions of the transport coefficients are
particularized for the steady homogeneous state in Sec. III.
The peculiarity of this state, in which the temperature is
a function of the parameters defining the system [22,25],
leads to much simpler expressions of the coefficients. Further
comments and conclusions, as well as the relationship with
some previous work for the viscosity transport coefficient, are
given in Sec. IV.

II. CHAPMAN-ENSKOG SOLUTION OF
THE BOLTZMANN EQUATION

The Boltzmann equation obeyed by the one-particle distri-
bution function, f (r,v,t), of the model reads [25](

∂

∂t
+ v · ∂

∂ r

)
f (r,v,t)

=
∫

dv1 T 0(v,v1)f (r,v,t)f (r,v1,t). (1)

Here, T 0 is the binary collision operator defined by

T 0(v1,v2) ≡ σd−1
∫

dσ̂ [�(v12 · σ̂ − 2�)(v12 · σ̂ − 2�)

×α−2b−1
σ (1,2) − �(v12 · σ̂ )(v12 · σ̂ )], (2)

where σ is the diameter of the particles, d is the dimension of
the system [35], σ̂ is the unit vector in d dimensions joining
the center of the two particles at contact, v12 ≡ v1 − v2 is the
relative velocity, �(x) is the Heaviside step function, α is the
coefficient of normal restitution defined in the interval 0 <

α � 1, � is some positive characteristic speed, and b−1
σ (i,j ) is

an operator changing all the velocities vi and vj to its right into
the precollisional values corresponding to a collision between
them defined by σ̂ , i.e.,

b−1
σ (i,j )vi = v∗

i = vi − 1 + α

2α
vij · σ̂ σ̂ + �σ̂

α
, (3)

b−1
σ (i,j )vj = v∗

j = vj + 1 + α

2α
vij · σ̂ σ̂ − �σ̂

α
. (4)

For arbitrary velocity functions, a(vi ,vj ) and b(vi ,vj ), it is [25]∫
dvi

∫
dvj b(vi ,vj )T 0(vi ,vj )a(vi ,vj )

=
∫

dvi

∫
dvj a(vi ,vj )T0(vi ,vj )b(vi ,vj ), (5)

where

T0(vi ,vj ) ≡ σd−1
∫

dσ̂ �(−vij · σ̂ )|vij · σ̂ |[bσ (i,j ) − 1].

(6)
The operator bσ (i,j ) is the inverse of b−1

σ (i,j ), i.e., it
changes vi and vj into their postcollisional values, v′

i and v′
j ,
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given by

bσ (i,j )vi = v′
i = vi − 1 + α

2
vij · σ̂ σ̂ + �σ̂ , (7)

bσ (i,j )vj = v′
j = vj + 1 + α

2
vij · σ̂ σ̂ − �σ̂ . (8)

The kinetic energy change in a collision is

e′
ij − eij = m

[
�2 − α�vij · σ̂ − 1 − α2

4
(vij · σ̂ )2

]
, (9)

with m being the mass of a particle. Using the identity (5), it
is easily found that∫

dv

∫
dv1 T 0(v,v1)f (r,v,t)f (r,v1,t) = 0, (10)

∫
dv

∫
dv1 vT 0(v,v1)f (r,v,t)f (r,v1,t) = 0, (11)

reflecting the conservation of the number of particles and the
momentum, respectively. On the other hand, it is∫

dv

∫
dv1

mv2

2
T 0(v,v1)f (r,v,t)f (r,v1,t) = ω[f,f ].

(12)
The term ω[f,f ] provides the rate of energy change due to the
inelasticity of collisions, and the functional ω[f,h] is

ω[f,h] ≡ π (d−1)/2mσd−1

2

∫
dv1

∫
dv2 f (r,v1,t)h(r,v2,t)

×
[

�2v12

	
(

d+1
2

) + π1/2α�v2
12

2	
(

d+2
2

) − (1 − α2)v3
12

4	
(

d+3
2

) ]
. (13)

The macroscopic number of particle density, n(r,t), flow
velocity, u(r,t), and granular temperature, T (r,t), are defined
from the one-particle distribution function in the usual way,

n(r,t) ≡
∫

dv f (r,v,t), (14)

n(r,t)u(r,t) ≡
∫

dv vf (r,v,t), (15)

d

2
n(r,t)T (r,t) ≡

∫
dv

mV 2

2
f (r,v,t), (16)

where V (r,t) = v − u(r,t) is the velocity of the particle
relative to the flow field. Balance equations for the above fields
follow by taking velocity moments in the Boltzmann equation,
Eq. (1),

∂n

∂t
+ ∇ · (nu) = 0, (17)

∂u
∂t

+ u · ∇u + (mn)−1∇ · P = 0, (18)

∂T

∂t
+ u · ∇T + 2

nd

(
P : ∇u + ∇ · Jq

) = −ζT . (19)

In the above equations, the pressure tensor, P, and the heat
flux, Jq , are defined by

P(r,t) ≡ m

∫
dv V (r,t)V (r,t)f (r,v,t) (20)

and

Jq(r,t) ≡ m

2

∫
dv V 2(r,t)V (r,t)f (r,v,t), (21)

respectively. In addition, Eq. (19) contains the rate of change
of the temperature, ζ (r,t), due to the inelasticity of collisions,
whose expression is

ζ (r,t) ≡ − 2

n(r,t)T (r,t)d
ω[f,f ]. (22)

The minus sign has been introduced by analogy with a
system of smooth inelastic hard spheres or disks, but in the
present context it does not presuppose that ζ is (semi)defined
positive [1].

To close the balance equations (17)–(19), it is necessary to
express the fluxes and the temperature change rate in terms of
the macroscopic fields by means of some constitutive relations.
To accomplish this, the Chapman-Enskog theory [36] assumes
the existence of a normal solution of the Boltzmann equation,
i.e., a solution in which all the dependence of the distribution
function on position and time occurs through its functional
dependence on the macroscopic fields n, u, and T ,

f (r,v,t) = f [v|n,u,T ]. (23)

Next, it is assumed that the space and time variations of the
fields are small, so that the functional dependence of the
distribution function on the fields can be localized in space
and time by means of an expansion in gradients. Then, the
distribution function is expressed as a power series expansion
in a formal uniformity parameter ε,

f = f (0) + εf (1) + ε2f (2) + · · · . (24)

Since the aim is to generate a gradient expansion, a factor
of ε is assigned to every gradient operator. Moreover, the
Chapman-Enskog method uses the multiple-scale perturbation
theory [37]. In practice, this is done by using the expansion
in Eq. (24) into the definition of the fluxes and the dissipation
rate ζ . Then the resulting expansions are introduced into the
macroscopic balance equations to get an identification of the
time derivatives of the macroscopic fields in the form of an
expansion in the uniformity parameter,

∂

∂t
= ∂

(0)
t + ε∂

(1)
t + ε2∂

(2)
t + · · · . (25)

Details of the application of the method are given in Ap-
pendixes A, B, and C. To first order in the gradients, the
pressure tensor and heat flux are given by

P = nT I − η

[
∇u + (∇u)+ − 2

d
∇ · uI

]
, (26)

Jq = −κ∇T − μ∇n, (27)

where I is the unit tensor in d dimensions, (∇u)+ is the
transposition of ∇u, η is the coefficient of shear viscosity,
κ is the heat conductivity, and μ is a new coefficient coupling
the heat flux and the density gradient, which is peculiar to
inelastic collisions [38]. To distinguish between the two energy
transport coefficients, sometimes κ is referred to as the thermal
heat conductivity and μ as the diffusive heat conductivity. The
transport coefficients are determined by the normal solutions
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of the first-order differential equations,

ζ
(0)

�∗

2

∂η

∂�∗ +
(

νη − ζ
(0)

2

)
η = 25/2π

d−1
2

(d + 2)	(d/2)
, (28)

ζ
(0)

�∗

2

∂κ

∂�∗ +
(

νκ + �∗

2

∂ζ
(0)

∂�∗ − 2ζ
(0)

)
κ

= 25/2(d − 1)π
d−1

2

d(d + 2)	(d/2)

(
1 + 2a2 − �∗

2

∂a2

∂�∗

)
, (29)

ζ
(0)

�∗

2

∂μ

∂�∗ +
(

νμ − 3ζ
(0)

2

)
μ − ζ

(0)
κ

= 25/2(d − 1)π
d−1

2 a2

d(d + 2)	(d/2)
. (30)

In these equations, �∗ ≡ �(m/2T )1/2 and dimensionless
transport coefficients have been introduced. They are defined
by

η ≡ η

η0
, κ ≡ κ

κ0
, μ ≡ nμ

T κ0
, (31)

where

η0 = 2 + d

8
	(d/2)π− d−1

2 (mT )1/2σ−(d−1) (32)

and

κ0 = d(d + 2)2

16(d − 1)
	(d/2)π− d−1

2

(
T

m

)1/2

σ−(d−1) (33)

are the shear viscosity and the (thermal) heat conductivity,
respectively, of a molecular gas described by the Boltzmann
equation, with the Boltzmann constant set equal to unity. In
general, the transport coefficients depend on position and time
through the temperature, although it has not been explicitly
shown, for the sake of simplicity. Moreover, dimensional
analysis implies that the dimensionless transport coefficients
only can depend on the temperature, and therefore on space
and time, through �∗. The dimensionless functions introduced
in Eqs. (28)–(30) are

ζ
(0) ≡ ζ (0)

nσd−1

(
m

2T

)1/2

,

νη ≡ νη

nσ d−1

(
m

2T

)1/2

, (34)

νκ = νμ ≡ νκ

nσ d−1

(
m

2T

)1/2

.

The expression of the zeroth-order rate of change of the
temperature, ζ (0), is given in Eq. (A12), while the frequencies
νη and νκ are given in Eqs. (B5) and (B6), respectively. Some
details of the calculations are shown in Appendixes A and B.
Finally, Eqs. (28)–(30) have been obtained by considering
the distribution function in the first Sonine approximation, in
which the deviation of the one-particle distribution function of
the gas from the Gaussian is characterized by the coefficient
a2, given by the normal solution of the ordinary differential
equation (A13). Moreover, the same kind of approximation
has been considered upon evaluating the hydrodynamic fluxes.

This is the usual approximation to obtain explicit expressions
for the transport coefficients of a gas with elastic collisions,
and there is no reason to question its accuracy here as well.
Actually, it has been shown to lead to quantitatively right
approximations in the case of a system of smooth inelastic hard
spheres or disks [6]. On the other hand, it is worth mentioning
that other approximation schemes have been considered in the
literature for the case of the inelastic hard spheres or disks. For
instance, the Maxwell-Boltzmann weight distribution used in
the Sonine expansion has been replaced by the time-dependent
zeroth-order distribution f (0) [39].

III. EULER AND NAVIER-STOKES TRANSPORT
COEFFICIENTS

As a consequence of the confinement of the fluid and its
description by means of a modified hard collision, there is
a contribution to the hydrodynamic equations of the rate of
change of the temperature ζ (r,t) of first order in the gradients,
namely it is [see Eq. (A31)]

ζ (1)(r,t) = ζ1∇ · u. (35)

The Euler transport coefficient ζ1 represents dissipation due to
the inelastic character of collisions proportional to ∇ · u. It has
no analog for elastic fluids, where the Euler hydrodynamics
(first order in the gradients of the fields) is referred to as the
“perfect fluid” equations, since there is no dissipation in that
limit. The expression derived here vanishes in the limit �∗ →
0, as a consequence of symmetry considerations [5], i.e., there
is no dissipation to Euler order in a dilute gas of smooth
inelastic hard spheres or disks. On the other hand, a term of the
form given in Eq. (35) is present in the hydrodynamic equations
even in systems of smooth particles if density effects are con-
sidered [7,11,32]. The calculation of ζ1 using the Chapman-
Enskog procedure requires us to determine f (1). The details
of the calculation are given in Appendix C, where the first
Sonine polynomial expansion is again employed. The same
approximation was used above to compute the Navier-Stokes
transport coefficients. In Fig. 1, the dimensionless coefficient

FIG. 1. (Color online) Dimensionless Euler transport coefficient
ζ1 as a function of dimensionless characteristic speed �∗ in a two-
dimensional system. The (red) dashed line is for a coefficient of
normal restitution α = 0.8 and the (black) solid line is for α = 0.9.
The (blue) dots indicate the values of the transport coefficient in each
of the two steady states.
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ζ1 is plotted as a function of the speed parameter for two
values of the coefficient of normal restitution, namely α =
0.8 and 0.9. The value of the transport coefficient in the
homogeneous steady state corresponding to each value of α

is indicated in the figure. To find the values of the transport
coefficient, a couple of first-order differential equations have
to be solved, namely Eqs. (A13) and (C3). The curves reported
in the figure correspond to the hydrodynamic solutions of
the equations, i.e., they are identified independently of the
initial conditions. The method is described below in detail for
the shear viscosity coefficient, and it will not be discussed
now.

The coefficient ζ1 is the contribution of the energy source
in collisions to what would physically constitute the effects
of the hydrostatic pressure at the Euler order. If a small
element of the confined granular gas is considered, then the
pressure that the fluid element exerts on its boundaries is
decreased or increased by the energy lost locally in collisions.
At the level of linear hydrodynamics, the pressure and the
Euler dissipative term are indistinguishable in their physical
implications [11].

To compute the Navier-Stokes transport coefficients,
Eqs. (28)–(30) have to be solved. In the equations, the
hydrodynamic expression of the second Sonine coefficient,
a2, has to be used. The latter is obtained by numerically
solving Eq. (A13) as a function of �∗ for a fixed value of
α, and a given initial condition a2(α,�∗

0) = a2,0. It is seen
that all the trajectories converge quite fast toward a universal
curve, identified as the hydrodynamic expression of the second
Sonine coefficient [26]. A similar method has been employed
here to generate the hydrodynamic transport coefficients.
Actually, what has been done is to simultaneously solve
the equation for a2 and those for the transport coefficients.
Since the rate of variation of the temperature vanishes in
the steady state by definition [25], the equations for the
transport coefficients have a singularity at the steady value
�∗ = �∗

st. Therefore, in the numerical simulations, trajectories
have been generated starting from both �∗

0 > �∗
st and with

�∗
0 < �∗

st. The hydrodynamic solution giving the expression of
the transport coefficient is the common part of all the numerical
solutions. As an example, the numerical results obtained for the
dimensionless coefficient η in a two-dimensional system with
α = 0.9 are shown in Fig. 2. All the numerical trajectories
converge toward the same curve, then forgetting the initial
conditions used to generate them. This is consistent with the
existence of a hydrodynamic shear viscosity being a function
of only the local hydrodynamic fields, but not of the previous
history or some initial values. In the particular case shown
in Fig. 2, several initial values of the viscosity parameter
corresponding to �∗ = 0.005 and 10 have been employed. The
curves tend to converge quite fast in the range 0 � �∗ � 0.2.
For �∗ � 0.2, the dependence of the solution of the differential
equation on the initial value of η used for �∗ = �∗

0 is rather
strong, and much more intensive numerical simulations would
be needed to identify the value of the hydrodynamic shear
viscosity. The two particular solutions drawn in Fig. 2 for �∗ >

�∗
st correspond to η(�∗

0 = 10) = 100 and η(�∗
0 = 10) = 0,

respectively, while the third plotted particular solution has
been obtained with the initial condition η(�∗

0 = 0.005) =
10. Results obtained with other initial conditions cannot be

FIG. 2. (Color online) Adimensionalized quantity η as a function
of the dimensionless characteristic speed �∗ in a two-dimensional
system with α = 0.9. The (red) dashed lines correspond to numerical
solutions of Eq. (28) obtained by using different initial conditions,
i.e., different values for the pair �∗

0,η(�∗
0). The (black) solid line

is the universal curve to which all the solutions converge. This is
precisely the function identified as the dimensionless hydrodynamic
shear viscosity. Also indicated in the figure is the steady value of �∗,
denoted by �∗

st, and the shear viscosity of the steady state, ηst.

distinguished from the normal curve on the scale of the
figure.

In Figs. 3–5, the coefficients of shear viscosity, η, (thermal)
heat conductivity, κ , and diffusive heat conductivity, μ, are
plotted as a function of the dimensionless characteristic speed
for a two-dimensional system. Two values of the coefficient
of normal restitution have been considered, namely α = 0.8
and 0.9. The reported curves correspond to the hydrodynamic
transport coefficients and have been obtained by the same
method as described above for the shear viscosity. The
values of several transport coefficients in the steady state are
indicated.

It is observed that the three Navier-Stokes transport coef-
ficients are monotonically decreasing functions of the speed

FIG. 3. (Color online) Adimensionalized shear viscosity η of a
two-dimensional system as a function of the dimensionless speed
parameter �∗. The (red) dashed curve is for α = 0.8 and the (black)
solid line is for α = 0.9. The (blue) dots indicate the steady-state
values in each case.
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FIG. 4. (Color online) Adimensionalized (thermal) heat conduc-
tivity κ of a two-dimensional system as a function of the dimen-
sionless speed parameter �∗. The (red) dashed curve is for α = 0.8
and the (black) solid line is for α = 0.9. The (blue) dots indicate the
steady-state values in each case.

parameter �∗ for the two values of the restitution coefficient
α considered in the figures. A similar behavior was found for
other values of α. The coefficient of diffusive heat conductivity,
μ, becomes even negative for large enough values of �∗.
Notice that this does not seem to imply the violation of any
fundamental physical law or be incompatible with any physical
symmetry. Nevertheless, it is quite possible that the exact value
of �∗ at which the change in sign of μ occurs is a consequence
of the approximations made and, in particular, of the first
Sonine approximation. When the prediction for μ in this
approximation is rather small, it is evident that higher-order
corrections might become relevant. In any case, the whole
range of the coefficient of normal restitution, 0 < α < 1, as
well as a quite wide interval of values of � > 0 have been
explored, and no anomalous behavior of the solutions of
Eqs. (28)–(30) has been found.

FIG. 5. (Color online) Adimensionalized diffusive heat conduc-
tivity μ as a function of the dimensionless speed parameter �∗ for
a two-dimensional system. The (red) dashed curve is for α = 0.8
and the (black) solid line is for α = 0.9. The (blue) dots indicate the
steady-state values in each case.

IV. TRANSPORT COEFFICIENTS IN THE
HOMOGENEOUS STEADY STATE

A particularly relevant state of the confined granular gas is
the homogeneous steady state. Stationarity of the temperature
implies that the rate of change of the temperature vanishes,
i.e., it is

ζ
(0)

(�∗
st) = 0. (36)

Then, particularization of Eq. (C3) for the steady state yields

ζ1,st = 2�∗
st

(
∂a2

∂�∗

)
�∗=�∗

st

ζ 1(�∗
st)

{
8χ (�∗

st)

d(d + 2)

+ dζ 1(�∗
st)

[
4(a2,st + 1) − �∗

st

(
∂a2

∂�∗

)
�∗=�∗

st

]}−1

.

(37)

Similarly, particularization of Eqs. (28)–(30) for the steady
state leads to explicit expressions for the Navier-Stokes
transport coefficients for this state,

ηst = 25/2π
d−1

2

(d + 2)	(d/2)
ν−1

η (�∗
st,a2,st), (38)

κst = 25/2(d − 1)π
d−1

2

d(d + 2)	(d/2)

[
1 + 2a2,st − �∗

st

2

(
∂a2

∂�∗

)
�∗=�∗

st

]

×
[
νκ (�∗

st,a2,st) + �∗
st

2

(
∂ζ

(0)

∂�∗

)
�∗=�∗

st

]−1

, (39)

μst = 25/2(d − 1)π
d−1

2 a2,st

d(d + 2)	(d/2)νμ(�∗
st,a2,st)

. (40)

The frequencies νη and νκ = νμ are defined in Eqs. (34).
Moreover, the calculation of a2(�∗) for �∗ in the vicinity of
�∗

st can be carried out in an efficient and quite accurate way
by noting that near �∗

st it is |∂a2/∂�∗| � 1 (see, for instance,
Fig. 9 in Ref. [27]). Then, near the steady state, Eq. (A13)
yields

a2 ≈ − B0 + 4A0

B1 + 4(A0 + A1)
. (41)

The expressions of A0, A1, B0, and B1 are given in Eqs. (A14)–
(A17).

It is now a simple task to evaluate the Euler and Navier-
Stokes transport coefficients in the steady state. They are
plotted in Figs. 6–9 as a function of the coefficient of normal
restitution α. The four coefficients present a clear depen-
dence with the inelasticity. The Euler transport coefficient
is a monotonic decreasing function of the coefficient of
normal restitution, while the dimensionless shear viscosity
monotonically increases with the value of α. This latter
behavior is consistent with molecular-dynamics simulation
results reported both for dilute [31] and moderately dense
systems [22]. Moreover, the dependence of the viscosity on
the coefficient of normal restitution is clearly nonlinear, again
in agreement with the simulations for dilute systems. It is
worthwhile to remember that in (nonconfined) dilute granular
gases of smooth inelastic hard spheres [5,6], the viscosity
decreases as the coefficient of normal restitution increases,
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FIG. 6. Dimensionless Euler transport coefficient of the two-
dimensional confined granular gas in the homogeneous steady state,
ζ1,st, as a function of the coefficient of normal restitution, α.

and that in a stochastic thermostat model it has been found
to be a nonmonotonic function of the inelasticity [33,34]. On
the other hand, the dependence on the restitution coefficients
of the two transport coefficients associated with the heat
flux is not monotonic in the homogeneous steady state
of the model discussed here, both exhibiting a minimum.
Moreover, the coefficient of diffusive heat conductivity μst

is negative in the whole range of values of α, while it is always
positive in a dilute nonconfined gas of inelastic hard spheres
or disks. Notice that the dependence of the steady transport
coefficients on the inelasticity of the system is quite strong. In
particular, the (thermal) heat conductivity for α = 0.8 is about
25% smaller than its elastic limit value.

In any case, when interpreting the results in Figs. 6–9, it
must be kept in mind that the bare transport coefficients have
been scaled with a function of the temperature of the steady
state, and that this temperature is in turn a function of the
coefficient of normal restitution (and the velocity parameter of
the model �). As a consequence, it is not possible to deduce
the general expressions of the transport coefficients of the
model to Navier-Stokes order from their form in the steady
homogeneous state.

FIG. 7. Dimensionless shear viscosity of the two-dimensional
confined granular gas in the homogeneous steady state, η1,st, as a
function of the coefficient of normal restitution, α.

FIG. 8. Dimensionless (thermal) heat conductivity of the two-
dimensional confined gas in the homogeneous steady state, κ st, as a
function of the coefficient of normal restitution, α.

V. DISCUSSION AND CONCLUSIONS

The objective of this work has been to derive the hydrody-
namic equations to Navier-Stokes order for a model of confined
granular gas from an underlying kinetic theory, with all the
parameters given explicitly. For clarification and context,
the following comment must be taken into account. When
applying the Chapman-Enskog procedure, the distribution
function has been computed up to first order in the gradients
of the hydrodynamic field density, flow velocity, and granular
temperature. Consequently, the heat and momentum fluxes
are also determined to the same order. Since they occur as
divergences in the balance equations, they lead to terms of
second order in the gradients in those equations, which is
usually referred to as the Navier-Stokes approximation for the
fluxes. In addition, the rate of change of the temperature, ζ ,
has been computed to first order, but it appears without any
gradient operator in front of it in the balance equation for the
energy. It follows that consistency of the Navier-Stokes order
would require, in principle, computing ζ up to second order in
gradients, i.e., going an order further in the Chapman-Enskog
expansion of the distribution function, i.e., the Burnett order.
Such a calculation is rather involved and lengthy. The only case
in which we are aware that second-order contributions from

FIG. 9. Dimensionless diffusive heat conductivity of the two-
dimensional confined granular gas in the homogeneous steady state,
μst, as a function of the coefficient of normal restitution, α.
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ζ have been analyzed deals with the linear contributions in a
low density gas of smooth inelastic hard spheres [5]. There,
it is found that the terms are very small as compared with
the similar ones arising from the fluxes. A similar behavior is
likely to occur here with all the second order in the gradient
contributions from ζ .

The derived hydrodynamic equations are general, in the
sense that they have no restriction with regard to the values
of the coefficient of normal restitution α or the velocity
parameter of the model �. In particular, they hold in principle
arbitrarily far from the homogeneous steady state, as long
as the system is near a homogeneous hydrodynamic state.
In the steady state, both parameters α and � determine the
temperature of the system, which is not an arbitrary parameter
anymore. Of course, the general hydrodynamic equations can
be particularized for the steady state, as has been actually done
here, but it must be emphasized that the general form of the
hydrodynamic equations cannot be inferred from the equations
derived for the steady situation.

The shear viscosity of the model in the steady state has
been measured by using event-driven molecular-dynamics
simulations. The transport coefficient was obtained from the
decay rate of the transverse current [22,31]. In a dense system
(nσ 2 = 0.4), it was found that a linear fit in (1 − α) gives

η � 1.0512
√

π [1 − 0.28(1 − α)]. (42)

An expansion of Eq. (38) in powers on α to first order gives

η � 1 − 17
64 (1 − α). (43)

As expected, the low-density theory developed here is not able
to predict the prefactor in Eq. (42). In dense systems, the colli-
sional contributions to momentum transfer, and consequently
to the shear viscosity, play a fundamental role, and those effects
are neglected at the level of the Boltzmann equation. However,
if the lowest-order inelasticity correction is considered, the
results obtained in this paper are in good agreement with the
simulation results for dense systems. A similar conclusion was
reached in Ref. [31]. Also, the dependence of the viscosity
on the coefficient of normal restitution as reported in Fig. 7
agrees qualitatively and even quantitatively with the simulation
results [31].

The transport properties derived here present the peculiarity
that the diffusive heat conductivity μ is negative for some
values of the parameters defining the model, i.e., inelasticity
and characteristic speed. In particular, the transport coefficient
is always negative in the homogeneous steady states. This
fact implies relevant differences, as compared with unconfined
systems of inelastic hard spheres or disks. One of them refers
to the stability diagram. This issue will be discussed in detail
elsewhere.

A relevant and recurrent question when deriving hydro-
dynamic equations from kinetic theory is to determine the
context in which the equations apply. The small parameter
in the Chapman-Enskog expansion is the ratio of the mean
free path relative to the wavelength of the variation of the
hydrodynamic fields. The mean free path is independent of
the time for the homogeneous hydrodynamics. Consequently,
it seems sensible to conclude that the conditions for the
Navier-Stokes order hydrodynamics of the model are the same
as for usual granular gases of inelastic hard spheres or disks

and also for elastic collisions, i.e., for sufficiently large space
and time scales as compared with the mean free path and the
inverse collision frequency.
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APPENDIX A: CHAPMAN-ENSKOG SOLUTION

To zeroth order in the gradients, the Chapman-Enskog
expansion leads to

∂
(0)
t f (0)(v) =

∫
dv1 T 0(v,v1)f (0)(v)f (0)(v1), (A1)

while the balance equations to this order become

∂
(0)
t n = 0, ∂

(0)
t u = 0, ∂

(0)
t T = −ζ (0)T . (A2)

The lowest-order rate of change of the temperature is given by

ζ (0)(r,t) = − 2

n(r,t)T (r,t)d
ω[f (0),f (0)]. (A3)

It is worthwhile to stress that the macroscopic fields are
not expanded in the Chapman-Enskog method, so that the
zeroth-order distribution function already provides the exact
actual macroscopic fields. Using Eqs. (A2), Eq. (A1) can be
transformed into

−ζ (0)T
∂f (0)

∂T
=

∫
dv1 T 0(v,v1)f (0)(v)f (0)(v1). (A4)

Since f (r,v,t) and, therefore, f (0)(r,v,t) are normal, the latter
must have the scaled form

f (0)(r,v,t) = nv−d
0 (T )f (0)∗(c,�∗), (A5)

where

v0(T ) ≡
[

2T (r,t)
m

]1/2

(A6)

is a characteristic local thermal velocity. The dimensionless
function f (0)∗ only depends on the temperature through the
scaled velocity,

c ≡ V (r,t)
v0(r,t)

, (A7)

and the dimensionless speed parameter,

�∗ ≡ �

v0(r,t)
. (A8)

As a consequence, Eq. (A4) is equivalent to

ζ (0)

2

[
∂

∂V
· (Vf (0)) + �∗ ∂

∂�∗ f (0)

]

=
∫

dv1 T 0(v,v1)f (0)(v)f (0)(v1). (A9)

This equation formally coincides with the one describing the
homogeneous hydrodynamics of the system in the low-density
limit [26]. It is important to realize that the zeroth-order
approximation in the Chapman-Enskog method is not a local
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version, both in space and time, of the distribution function
of the homogeneous steady state eventually reached by the
system [22,25], but rather it is a local distribution generated
from that describing the time-dependent homogeneous hy-
drodynamics. This is a relevant general issue when dealing
with hydrodynamics around a nonequilibrium state [40]. In
the second Sonine approximation, the zeroth-order distribution
function is approximated by

f (0)(r,v,t) � n

(π1/2v0)d
e−c2

[1 + a2(�∗)S(2)(c2)], (A10)

where

S(2)(c2) ≡ d(d + 2)

8
− d + 2

2
c2 + c4

2
. (A11)

Neglecting terms nonlinear in a2, substitution of Eq. (A10)
into Eq. (A3) yields

ζ (0)(T ) ≈ 23/2π (d−1)/2nσd−1v0(T )

	(d/2)d

[
1 − α2

2

(
1 + 3a2

16

)

−α

(
π

2

)1/2

�∗ −
(

1 − a2

16

)
�∗2

]
. (A12)

An equation for a2(�∗) is obtained by using this expression in
the Boltzmann equation (A9), multiplication of the equation
by c4, and later integration over the velocity c. If the quadratic
terms in a2, as well as a term proportional to a2∂a2/∂�∗, are
neglected, one gets [26]

∂a2

∂�∗ =
[

4

�∗ + 4A1 + B1

A0�∗

]
a2 + 4

�∗ + B0

A0�∗ , (A13)

with several coefficients given by

A0(α,�∗) = (d + 2)

[
1 − α2

2
−

(
π

2

)1/2

α�∗ − �∗2

]
,

(A14)

A1(α,�∗) = (d + 2)

16

[
3(1 − α2)

2
+ �∗2

]
, (A15)

B0(α,�∗) = (2π )1/2(1 + 2d + 3α2 + 4�∗2)α�∗

− 3 + 4�∗4 + α2 + 2α4 − 2d(1 − α2 − 2�∗2)

+ 2�∗2(1 + 6α2), (A16)

B1(α,�∗) =
(

π

2

)1/2

[2 − 2d(1 − α) + 7α + 3α3]�∗

− 1

16
{85 + 4�∗4 − 18(3 + 2α2)�∗2

− (32 + 87α + 30α3)α

− 2d[6�∗2 − (1 + α)(31 − 15α)]}. (A17)

The normal solution of Eq. (A13) has been analyzed in
Ref. [26] by solving numerically the differential equation
for different initial conditions, and identifying the common
part of all the generated solutions. Independently of the
approximation used to calculate it, the solution of Eq. (A9)
is isotropic in velocity space, i.e., it only depends on V . It

follows that the lowest-order pressure tensor and heat flux are

P(0)(r,t) = p(r,t)I, J (0)
q (r,t) = 0, (A18)

where I is the unit pressure tensor in d dimensions, and p(r,t)
is the hydrodynamic pressure,

p(r,t) = n(r,t)T (r,t). (A19)

To first order in ε, the expansion of the Boltzmann equation
gives

∂
(0)
t f (1) + Lf (1) = −∂

(1)
t f (0) − v · ∂f (0)

∂ r
, (A20)

with the linear operator L defined by

Lf (1)(r,v,t) ≡ −
∫

dv1 T 0(v,v1)[f (0)(r,v,t)f (1)(r,v1,t)

+ f (1)(r,v,t)f (0)(r,v1,t)]. (A21)

The macroscopic balance equations to this order are

∂
(1)
t n + u · ∇n + n∇ · u = 0, (A22)

∂
(1)
t u + u · ∇u + (mn)−1∇p = 0, (A23)

∂
(1)
t T + u · ∇T + 2T

d
∇ · u = −ζ (1)T , (A24)

with the first order in ε cooling rate being a linear functional
of f (1),

ζ (1) ≡ − 4

n(r,t)T (r,t)d
ω[f (0),f (1)]. (A25)

By using Eqs. (A22)–(A24), and because f (0) and f (1) are both
normal distributions, Eq. (A20) is seen to be equivalent to

∂
(0)
t f (1) + Lf (1) − ∂f (0)

∂T
ζ (1)T

= A · ∇ ln T + B · ∇ ln n + C : ∇u, (A26)

where

A(V |n,T ) = −T

m

∂f (0)

∂V
+ V

2

∂

∂V
· (Vf (0)) + V

2
�∗ ∂f (0)

∂�∗ ,

(A27)

B(V |n,T ) = −Vf (0) − T

m

∂f (0)

∂V
, (A28)

C(V |n,T ) = ∂

∂V
(Vf (0)) − 1

d

[
∂

∂V
· (Vf (0)) + �∗ ∂f (0)

∂�∗

]
I.

(A29)

Because of the presence of the term involving �∗ on the right-
hand side of Eq. (A29), the tensor C is not traceless, contrary
to what happens in a system of elastic particles [36] and also
in a system of inelastic hard spheres or disks [5]. The solution
of the linear equation (A26) must have the form

f (1)(V |n,T ) = A · ∇ ln T + B · ∇ ln n + C : ∇u. (A30)

Consider the first-order cooling rate ζ (1) given by Eq. (A25). It
is a scalar and, therefore, the only nonvanishing contribution
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to it has the form

ζ (1) = ζ1∇ · u (A31)

with the Euler transport coefficient ζ1 given by

ζ1 = − 4

nT d2
ω[f (0), Tr C], (A32)

where Tr C denotes the trace of the tensor C. When
Eqs. (A2), (A30), and (A31) are substituted into Eq. (A26),
equations for A, B, and C are found by equating coefficients
of the various gradients of the hydrodynamic fields,

−ζ (0)T
∂A
∂T

− T
∂ζ (0)

∂T
A + LA = A, (A33)

−ζ (0)A − ζ (0)T
∂B
∂T

+ LB = B, (A34)

−ζ (0)T
∂C
∂T

+ LC − T
∂f (0)

∂T
ζ1I = C. (A35)

Next, let us analyze the contribution to the fluxes of first
order in the gradients. The expression for the pressure tensor
contribution can be expressed as

P(1) = m

∫
dV V Vf (1)(V ) = m

∫
dV D(V )f (1)(V ),

(A36)
where

D(V ) ≡ m

(
V V − 1

d
V 2I

)
, (A37)

since f (0) gives, by construction, the correct exact value of
the hydrodynamic fields and, consequently, the contributions
to them from f (i), i = 1,2, . . . , must vanish. Then, taking into
account the isotropy of the tensors and that D is traceless, it
follows that

P(1) =
∫

dV D(V )C(V ) : ∇u

= −η

[
∇u + (∇u)+ − 2

d
∇ · uI

]
, (A38)

with (∇u)+ being the transposition of ∇u, and

η = − 1

d2 + d − 2

∫
dV D(V ) : C(V ). (A39)

Proceeding in a similar way, it is seen that the heat flux to first
order in gradients reads

J (1)
q = −κ∇T − μ∇n. (A40)

The coefficients in this expression are given by

κ = − 1

T d

∫
dV S(V ) · A(V ), (A41)

μ = − 1

nd

∫
dV S(V ) · B(V ), (A42)

where

S(V ) ≡
(

mV 2

2
− d + 2

2
T

)
V . (A43)

Define the frequencies

νη ≡
∫

dV D(V) : LC(V )∫
dV D(V) : C(V)

, (A44)

νκ ≡
∫

dV S(V) · LA(V)∫
dV S(V) · A(V)

, (A45)

νμ ≡
∫

dV S(V) · LB(V)∫
dV S(V) · B(V)

. (A46)

By using these definitions and Eqs. (A33)–(A35), it is easy to
obtain first-order differential equations obeyed by the transport
coefficients,(

ζ (0)T
∂

∂T
− νη

)
η

= − 1

d2 + d − 2

∫
dVD(V ) : C(V ) = −nT , (A47)

[
ζ (0)T

∂

∂T
− νκ + ∂(T ζ (0))

∂T

]
κ

= 1

T d

∫
dV S(V ) · A(V )

= − (d + 2)nT

2m

(
1 + 2a2 + T

∂a2

∂T

)
, (A48)

(
ζ (0)T

∂

∂T
− νμ

)
μ + ζ (0)T κ

n

= 1

nd

∫
dV S(V ) · B(V ) = − (d + 2)T 2

2m
a2. (A49)

Upon deriving the last equalities in each of the above
three equations, the second Sonine approximation for f (0),
Eq. (A10), has been employed.

APPENDIX B: EVALUATION OF THE FREQUENCIES

Approximated expressions for the functions νη, νκ , and νμ

have been obtained using a Sonine expansion, truncated to
lowest order. Since the collision operator commutes with the
rotation operator, it follows from Eqs. (A33)–(A35) that A
and B must be isotropic functions of the velocity times S(V ).
Moreover, only the traceless part of C is needed, and it must
be the product of an isotropic function times D(V ). Then, to
lowest order in a Sonine expansion,

A(V ) ∝ fM (V )S(V ),

B(V ) ∝ fM (V )S(V ), (B1)

C(V ) − I
d

Tr C ∝ fM (V )D(V ),

where fM is the Maxwellian distribution,

fM (V ) = n

(
m

2πT

)d/2

exp

(
− mV 2

2T

)
. (B2)
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With this approximation,

νη =
∫

dV D(V) : L[fM (V )D(V)]∫
dV fM (V )D(V) : D(V)

=
∫

dV Dij (V)L[fM (V)Dij (V)]

(d − 1)(d + 2)nT 2
, (B3)

νκ = νμ =
∫

dV S(V) · L[fM (V )S(V)]∫
dV fM (V)S(V) · S(V)

= 2m
∫

dV S(V) · L[fM (V)S(V)]

d(d + 2)nT 3
. (B4)

The evaluation of the integrals in the above expressions
is straightforward, and it is facilitated by using symbolic
computer programs. Since similar calculations have been
reported many times in the literature, we merely report here
the final results,

νη =
√

2π
d−1

2 nσd−1v0(T )

d(d + 2)	(d/2)

[
(1 + α)(2d+3 − 3α)

(
1− a2

32

)

+
√

2π (d − 2α)�∗ − 2

(
1 + 3a2

32

)
�∗2

]
, (B5)

νκ = νμ = π
d−1

2 nσd−1v0(T )√
2d(d + 2)	(d/2)

×
{

(1 + α)[512 + 352d − 96α(d + 8)]

26

+ (1 + α)[5d + 4 − 3(4 − d)α]

26
a2

−
(

π

2

)1/2

[2(1 − d) + (d + 8)α]�∗

− 32(d + 8) − 3(4 − d)a2

25
�∗2

}
. (B6)

For �∗ = 0, the above expressions reduce to those obtained in
Refs. [5] and [6].

APPENDIX C: THE EULER TRANSPORT COEFFICIENT

The transport coefficient ζ1 is given by Eq. (A32). An
equation for it can be obtained from Eq. (A35),

−ζ (0)T
∂ Tr C
∂T

+ LTr C − T
∂f (0)

∂T
ζ1d

= Tr C = −�∗ ∂f (0)

∂a2

∂a2

∂�∗ . (C1)

Since Tr C must have vanishing velocity moments up to second
degree, its lowest-order Sonine approximation reads

Tr C � b2e
−c2

πd/2σd−1vd+1
0

S(2)(c2). (C2)

To determine the dimensionless coefficient b2, we substitute
the above expression into Eq. (C1), and afterward we multiply
it by v4 and integrate over v. After some lengthy but trivial
algebra, a differential equation is obtained,

ζ
(0)

�∗ ∂b2

∂�∗ −
[

3ζ
(0) + 8χ (�∗)

d(d + 2)
+ 4dζ1(a2 + 1)

−dζ1�
∗ ∂a2

∂�∗

]
b2 = −2�∗ ∂a2

∂�∗ . (C3)

Here,

ζ 1 ≡ ζ1

b2
= −4π− d+1

2

d2

∫
dc1

∫
dc2 e−c2

1−c2
2

× [
1 + a2S

(2)
(
c2

1

)]
S(2)

(
c2

2

)
×

[
�∗2c12

	
(

d+1
2

) + π1/2α�c2
12

2	
(

d+2
2

) − (1 − α2)c3
12

4	
(

d+3
2

) ]
(C4)

and

χ (�∗) ≡ − 1

b2v
4
0n

∫
dvv4LTr C

= 1

b2v
4
0n

∫
dv

∫
dv1 f (0)(r,v,t) Tr C(v1)

× T0(v,v1)
(
v4 + v4

1

)
. (C5)

The integrals in the above expressions of ζ1 and χ can be
carried out getting

ζ 1 = π
d−1

2

2
17
2 d2	(d/2)

[96 + 9a2 − 3α2(32 + 3a2)

+�∗2(64 + 30a2)], (C6)

χ = π
d−1

2

211	(d/2)
(
√

2{30α4(32 − a2) − 5(544 + 7a2)

− 4�∗2(32 + 15a2) − 64(d − 1)α(16 + a2)

− 2d(992+17a2)+3α2[928 + 43a2 + 12�∗2(32 + 3a2)

+ 10d(32 − a2)] + 6�∗2(288 − 45a2 + 64d + 6da2)}
+ 512

√
π�∗[2 + 7α + 3α3 − 2d(1 − α)]). (C7)

Now, the dimensionless coefficient b2 is obtained by solving
numerically the set of equations (A13) and (C3), and identify-
ing the hydrodynamic part of the solution as discussed in the
main text for the shear viscosity. Afterward, the Euler transport
coefficient ζ1 follows by using Eq. (C4).
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