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Homogeneous hydrodynamics of a collisional model of confined granular gases
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The hydrodynamic equation governing the homogeneous time evolution of the temperature in a model of
confined granular gas is studied by means of the Enskog equation. The existence of a normal solution of the
kinetic equation is assumed as a condition for hydrodynamics. Dimensional analysis implies a scaling of the
distribution function that is used to determine it in the first Sonine approximation, with a coefficient that evolves
in time through its dependence on the temperature. The theoretical predictions are compared to numerical results
obtained by the direct simulation Monte Carlo method and a good agreement is found. The relevance of the
normal homogeneous distribution function to derive inhomogeneous hydrodynamic equations, for instance using
the Champan-Enskog algorithm, is indicated.
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I. INTRODUCTION

Granular systems exhibit a rich phenomenology that is far
from being well understood. When they are fluidized, many
of the observed features have a strong similarity to what
happens in ordinary, molecular fluids. Therefore, it is not
surprising that a great deal of effort has been made to develop
a hydrodynamic theory for granular gases, i.e., for granular
systems under conditions in which the particles move freely
and independently between binary collisions [1,2]. Although
the success of granular hydrodynamics is undeniable, there are
still many open fundamental questions whose answer can only
be obtained by using kinetic theory and statistical mechanics
methods [3–5].

Granular gases are inherent nonequilibrium systems due
to the inelasticity of collisions. There is no equilibrium state
that can be used as a zeroth order or reference local state
when developing a theory to describe the possible states of a
system. Instead, there is a homogeneous state, with uniform
hydrodynamic fields, which cools monotonically in time: the
homogeneous cooling state (HCS) [1]. This essential feature
has relevant implications in the structure of the macroscopic
transport equations [5–7].

A steady situation can be reached if energy is continuously
supplied to a granular gas. In general, the price to be paid
is that the system develops spatial inhomogeneities in such a
way that the energy dissipated in collisions is compensated
by the energy flux associated to the hydrodynamic gradients.
Nevertheless, it has been observed in experiments that it is
possible to generate an almost uniform steady state of a
granular gas by considering the horizontal dynamics of a
vibrated system confined to a quasi-two-dimensional geometry
[8,9]. The theoretical description of the dynamics of the
two-dimensional fluid generated in this way is a relevant
physical question. Of course, the main issue is to describe how
the energy is translated from the wall vibrating in the vertical
direction to the horizontal degrees of freedom of the particles.
A first possibility is to consider an external noise force acting
on each particle [10–12]. Although it is true that this modeling
leads to the existence of a uniform steady state, its possible
relation with the state generated in the experiments with
vibrated confined granular gases has not been established.

Very recently, an alternative approach to the description
of the two-dimensional dynamics of a confined granular gas

has been proposed [13,14]. The idea is to substitute the
real three-dimensional collision rule by an effective two-
dimensional one, trying to capture the mechanism for which
the particles convert their kinetic energy associated to the
vertical component of the velocity into kinetic energy in
the horizontal plane. That makes a conceptually important
difference with the stochastic models mentioned above. While
in the case of an external noise the rate of injection of energy
into the two-dimensional motion of the particles is independent
of their collision rate, in the model of Ref. [13] it is precisely the
collision rate that controls the interchange of energy between
the vertical and horizontal degrees of freedom. For this reason,
we refer to this model as to a collisional one. The main features
of its homogeneous steady state were analyzed by the authors
of Ref. [14]. Here, the dynamics of the system towards the
steady state, assuming that it remains always homogeneous,
will be addressed. The interest of this issue is twofold. First,
it will provide useful information to validate the model by
comparing its predictions to molecular dynamics results of
vibrated granular systems and even with experiments. Work
is presently in progress along this line. Second, it permits
the study of the hydrodynamics around nonequilibrium steady
states in one of the simplest possible scenarios.

In ordinar fluids, the only translationally invariant hydrody-
namic state is equilibrium. There is no possible hydrodynamic
evolution of the temperature if the hydrodynamic fields are
homogeneous. On the other hand, isolated granular fluids
have a time-dependent nonequilibrium homogeneous state,
the HCS, as mentioned above. The time evolution of the
temperature of a granular gas in this state obeys a macroscopic,
hydrodynamic equation. When external energy is continuously
supplied to a granular gas, a homogeneous steady state can be
possible, depending on the way in which the energy is injected.
This is what happens in the confined vibrated systems being
modeled here. In this case, the existence of a homogeneous
hydrodynamic regime, characterized by a closed equation for
the evolution of the temperature towards its steady value, can
be expected on the appropriate time scale. In the context
of kinetic theory, hydrodynamics is guaranteed if the time
evolution of the system is described by a normal velocity
distribution, having the property that all its time dependence
occurs through the granular temperature. This implies some
scaling property of the distribution function. The particular
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form of the scaling depends on the number of parameters
defining the system (or the model) and their nature. The case
of a granular gas driven by an external stochastic thermostat
has already been studied and the existence of homogeneous
hydrodynamics established [15,16]. In this work, a similar
analysis will be presented for the collisional model of confined
granular gases.

It is worth stressing the relevance of this homogeneous
time-dependent hydrodynamic state. When elaborating a
theory for hydrodynamics in a confined granular gas, the
general zeroth order in the gradients reference state to be
considered is not a local version of the stationary state
eventually reached by the system, but a distribution based
on the time-dependent state characterizing the homogeneous
hydrodynamics. Only when the system is considered to be
close to the steady situation, linearization around this state will
be allowed. For general hydrodynamic states, an expansion
around a local time-dependent state has to be considered.
The reason for this is that a steady state occurs when the
rate of variation of the temperature vanishes. This gives a
relationship between the temperature and some parameters
of the system. As a consequence, the temperature is not
arbitrary but fixed in the steady state, and there is not a unique
way of identifying the dependence on the temperature of the
distribution function of that state. Consequently, it makes no
sense to use this state to define arbitrary hydrodynamic fields
as the starting point of the Chapman-Enskog method. This
is a quite general feature of steady nonequilibrium states, as
discussed in a seminal paper by Lutsko [17].

The plan of the paper is as follows. In the next section,
the model is formulated in a concise way, and some results
previously derived are summarized. Assuming the existence
of an homogeneous normal solution of the pseudo-Liouville
equation of the system, formally exact equations are derived
for the evolution of the temperature and the one-particle
distribution function. The later is the first equation of an infinity
hierarchy, as usual in nonequilibrium statistical mechanics. To
close it and get a kinetic equation, the Enskog approximation
is used in Sec. III. Moreover, calculations are restricted to
the first Sonine correction to a Gaussian distribution. Then,
it is possible to obtain an expression for the temperature rate
and also an equation for the coefficient a2 in front of the first
Sonine correction. The equation has a special solution such
that all the other solutions tend to it, before reaching the steady
value. This kind of behavior corresponds to the existence of
hydrodynamics, in the sense that all the time dependence
of the distribution function occurs through the temperature.
In Sec. IV, the theoretical predictions are compared with
simulation results obtained by means of the direct simulation
Monte Carlo method, and a quite good agreement is found.
Finally, Sec. IV contains a short summary and discussion of
the main results.

II. HOMOGENEOUS DYNAMICS

The system considered is composed of N identical hard
spheres (d = 3) or disks (d = 2) of mass m and diameter σ

enclosed in a volume V . Although the particular application of
the model in mind is restricted to a two-dimensional dynamics,
it will be developed for an arbitrary dimension. The reason

is that it can be done with little additional effort, and it
could be useful in the future for other potential applications.
The position and velocity coordinates of the particles will be
denoted by {r i ,vi ; i = 1, . . . ,N}. The dynamics consists of
free streaming until a given pair of particles i,j are at contact.
At this moment, the velocities of the two particles change
instantaneously according to the inelastic collision rule [13,14]

vi → v′
i = vi − 1 + α

2
vij · σ̂ σ̂ + �σ̂ , (1)

vj → v′
j = vj + 1 + α

2
vij · σ̂ σ̂ − �σ̂ . (2)

Here vij ≡ vi − vj is the relative velocity prior collision, σ̂

is a unit vector directed from the center of particle j to the
center of particle i through the point of contact, and � is
some positive characteristic speed. The coefficient of normal
restitution α takes values in the interval 0 < α � 1. The total
momentum of the pairs is conserved in collisions, but there is
a change in kinetic energy given by

e′
ij − eij = m

[
�2 − α�vij · σ̂ − 1 − α2

4
(vij · σ̂ )2

]
. (3)

The state of the system at time t is completely characterized by
the positions and velocities of all particles at that time and it is
represented by a point �t ≡ {r1(t), . . . rN (t),v1(t), . . . ,vN (t)}
in the associated 2dN-dimensional phase space. The dynamics
of the system corresponds to a deterministic trajectory in
this phase space. In the context of statistical mechanics, the
system is described by means of the probability density ρ(�,t).
In Ref. [14], the pseudo-Liouville equation obeyed by this
function was derived

∂

∂t
ρ(�,t) = L+(�)ρ(�,t), (4)

with the pseudo-Liouville operator L+(�) given by

L+(�) ≡ −
N∑

i=1

vi · ∂

∂ r i

+
∑

1�i<j�N

T +(i,j ). (5)

Here, T +(i,j ) is the binary collision operator

T +(i,j ) ≡ σd−1
∫

dσ̂
[
θ (vij · σ̂ − 2�)(vij · σ̂ − 2�)

× δ(r ij − σ )α−2b−1
σ (i,j ) − θ (vij · σ̂ )

× vij · σ̂ δ(r ij + σ )
]
. (6)

In the above expression, σ ≡ σ σ̂ , θ is the Heaviside step
function, and the operator b−1

σ (i,j ) changes all the velocities
vi and vj to its right into the precollisional values

b−1
σ (i,j )vi = vi − 1 + α

2α
vij · σ̂ σ̂ + �σ̂

α
, (7)

b−1
σ (i,j )vj = vj + 1 + α

2α
vij · σ̂ σ̂ − �σ̂

α
. (8)

From the Liouville equation, the Born-Bogoliubov-Green-
Kirkwood-Ivon (BBGKY) hierarchy of equations for the
reduced distribution functions is easily derived [14]. The first
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equation of the hierarchy reads(
∂

∂t
+ v1 · ∂

∂ r1

)
f1(r1,v1,t)

=
∫

d r2

∫
dv2 T +(1,2)f2(r1,v1,r2,v2,t), (9)

where f1(r1,v1,t) and f2(r1,v1,r2,v2,t) are the one-particle
and two-particle reduced distribution functions, respectively.
Attention will be restricted in this paper to spatially ho-
mogeneous states. A kinetic granular temperature T (t) is
defined from the mean square velocity of the particles
according to

T (t) ≡ 1

nd

∫
dv1 mv2

1f1(v1,t). (10)

Above, n ≡ N/V is the number of particles’ density, and it
has been taken into account that the one-particle distribution
function does not depend on the position for homogeneous
states.

An equation for the time evolution of T (t) can be derived
by using Eq. (9)

∂T (t)

∂t
= −ζ (t)T (t), (11)

with the rate of change ζ (t) of the temperature due to the
inelasticity of collisions given by

ζ (t) = −mσd−1

nT (t)d

∫
dv1

∫
dv2

∫
dσ̂ θ (v12 · σ̂ )v12 · σ̂

×
[
�2 + α�v12 · σ̂ − 1 − α2

4
(v12 · σ̂ )2

]
× f2(r1,v1,r1 + σ ,v2,t). (12)

For homogeneous systems f2(r1,v1,r1 + σ ,v2,t) does not
depend on r1.

In place of the equilibrium state, the system has a stationary
homogeneous state that has been discussed in Ref. [14]. In
this paper, the time evolution of the temperature, eventually
towards its steady value, under homogeneous conditions
will be analyzed. On the appropriate time scale, the exis-
tence of a hydrodynamic-like description is expected. By
definition, when the later holds, the time evolution of the
temperature will obey a closed differential equation. The
existence of this hydrodynamic regime will not be proven
here, but it will be checked a posteriori by comparing some
of its predictions with the numerical simulation results. A
sufficient condition for homogeneous hydrodynamics is that
the solution of the Liouville equation describing the time-
dependent state of the system be “normal,” meaning that
all its time dependence occurs through the granular tem-
perature [18]. Then dimensional analysis requires that the
probability density of the system ρH (�,t) has the scaling
form

ρH (�,t) = [�v0(t)]−Ndρ∗
H ({qij ,ci ; i,j = 1, . . . ,N},�∗).

(13)

The dimensionless function ρ∗
H is invariant under space

translations. From now on the subindex H will be used to

indicate that a quantity refers to the homogeneous hydro-
dynamic regime. Velocities have been scaled relative to the
thermal velocity and space coordinates relative to a quantity
proportional to the mean free path

qi ≡ r i

�
, ci ≡ vi

v0(t)
, (14)

with � ≡ (nσd−1)−1 and v0(t) ≡ [2T (t)/m]1/2. The depen-
dence of ρ∗ on the dimensionless parameter

�∗ ≡ �

v0(t)
(15)

has been indicated explicitly. In the hydrodynamic regime,
the temperature obeys, by definition, a closed first-order
differential equation. In Ref. [14] it was shown that there
is only one steady temperature. Therefore, if the steady
state is always reached in the homogeneous evolution, it
follows that the temperature of the system increases or
decreases depending on whether it is smaller or larger than
its steady value, tending always monotonically to it. The
substitution of Eq. (13) into the pseudo-Liouville equation (4)
gives

ζ ∗(α,�∗)

2

{∑
i

∂

∂ci

· [ciρ
∗
H ({qij ,ci},�∗)]

+ �∗ ∂

∂�∗ ρ∗
H ({qij ,ci},�∗)

}
= L

∗
+(�∗)ρ∗

H ({qij ,ci},�∗).

(16)

The dimensionless rate of change of the temperature is

ζ ∗(α,�∗) ≡ �ζH (t)

v0(t)

= −2σ ∗d−1

n∗d

∫
dc1

∫
dc2

∫
dσ̂ θ (c12 · σ̂ )c12 · σ̂

×
[
�∗2 + α�∗c12 · σ̂ − 1 − α2

4
(c12 · σ̂ )2

]
× f ∗

2,H (q1,c1,q1 + σ ∗,c2,�
∗), (17)

with

σ ∗ = σ

�
(18)

and

n∗ = n�d (19)

being the scaled diameter and number density, respectively.
The dimensionless two-particle reduced distribution function
is defined as

f ∗
2,H (q1,c1,q2,c2,�

∗) = [�v0(t)]2df2,H (r1,v1,r2,v2,t). (20)

The pseudo-Liouville operator in Eq. (16) is given by

L
∗
+(�∗) = −

∑
i

ci · ∂

∂qi

+
∑

1�i<j�N

T
∗
+(i,j ), (21)
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BREY, MAYNAR, GARCÍA DE SORIA, AND BUZÓN PHYSICAL REVIEW E 89, 052209 (2014)

with the binary collision operator

T
∗
+(i,j ) ≡ σ ∗d−1

∫
dσ̂

[
θ (cij · σ̂ − 2�∗)(cij · σ̂ − 2�∗)

× δ(qij − σ ∗)α−2b−1
σ (i,j )

− θ (cij · σ̂ )cij · σ̂ δ(qij + σ ∗)
]
. (22)

The operator b−1
σ (i,j ) is now understood to act on the velocities

ci and cj , changing them according to

b−1
σ (i,j )ci ≡ ci − 1 + α

2α
cij · σ̂ σ̂ + �∗σ̂

α
, (23)

b−1
σ (i,j )cj ≡ cj + 1 + α

2α
cij · σ̂ σ̂ − �∗σ̂

α
. (24)

The above results in this section provide the natural represen-
tation to investigate the homogeneous hydrodynamics in the
model being considered here.

III. ENSKOG APPROXIMATION

The first equation of the hierarchy following by integration
of Eq. (16) is

ζ ∗(α,�∗)

2

{
∂

∂c1
· [c1f

∗
1,H (c1,�

∗)] + �∗ ∂

∂�∗ f ∗
1,H (c1,�

∗)

}
=

∫
dq2

∫
dc2 T

∗
+(1,2)f ∗

2,H (q1,c1,q2,c2,�
∗), (25)

where the dimensionless one-particle reduced distribu-
tion function is consistently defined as f ∗

1,H (c1,�
∗) =

[�v0(t)]df1,H (v1,t).
In the Enskog theory [14,19,20], the precollisional two-

body distribution function at contact is approximated as

δ(r12 − σ )θ (−v12 · σ̂ )f2(r1,v1,r2,v2,t)

≈ δ(r12 − σ )θ (−v12 · σ̂ )gE[r1,r2|n(t)]f1(r1,v1,t)

× f1(r2,v2,t). (26)

Here, gE[r1,r2|n(t)] is the equilibrium spatial pair correlation
function evaluated with the nonequilibrium density field at
time t . For the homogeneous states being considered here and
in the dimensionless units introduced in the previous section,
Eq. (26) becomes

δ(q12 − σ ∗)θ (−c12 · σ̂ )f ∗
2,H (q1,c1,q2,c2,�

∗)

≈ δ(q12 − σ ∗)ge(σ,n)θ (−c12 · σ̂ )n∗2φ(c1,�
∗)φ(c2,�

∗).

(27)

This expression involves the homogeneous equilibrium pair
correlation function at contact ge(σ,n), and the scaled velocity
distribution φ(c,�∗) defined by

f ∗
1,H (c,�∗) = n∗φ(c,�∗). (28)

The use of Eq. (27) into Eq. (25) leads to

ζ ∗
B(α,�∗)

2

{
∂

∂c
·[cφ(c,�∗)] +�∗ ∂

∂�∗ φ(c,�∗)

}
= n∗JB[c|φ],

(29)

where ζ ∗
B(α,�∗) is the Boltzmann limit of the dimensionless

temperature rate

ζ ∗
B(α,�∗) = − 2

d

∫
dc1

∫
dc2

∫
dσ̂ θ (c12 · σ̂ )c12 · σ̂

×
[
�∗2 + α�∗c12 · σ̂ − 1 − α2

4
(c12 · σ̂ )2

]
×φ(c1,�

∗)φ(c2,�
∗) (30)

and JB[c|φ] is the (inelastic) Boltzmann collision term

JB[c1|φ] = σ ∗d−1
∫

dc2

∫
dσ̂

[
θ (c12 · σ̂ − 2�∗)

× (c12 · σ̂ − 2�∗)α−2b−1
σ (1,2)

− θ (c12 · σ̂ )c12 · σ̂
]
φ(c1,�

∗)φ(c2,�
∗). (31)

It is worth stressing that Eq. (29) is valid in the Enskog
approximation, although it does not involve the pair correlation
function. In this way, a closed differential equation for the
one-particle velocity distribution has been obtained, but given
its mathematical complexity, additional approximations are
needed to be able to solve it by analytical methods. Then,
the function φ(c,�∗) is expanded in Sonine polynomials
as [19]

φ(c,�∗) = φ(0)(c)
∞∑

j=0

aj (�∗)S(j )(c2), (32)

where

φ(0)(c) ≡ π−d/2e−c2
(33)

and

S(j )(c2) ≡
j∑

r=0

�(j + d/2)

(j − r)!r!�(r + d/2)
(−c2)r . (34)

The normalization of the distribution and the scaling of the
velocities with the thermal one imply that a0 = 1 and a1 = 0.
Moreover, it is,

a2(�∗) = 4〈c4〉
d(d + 2)

− 1, (35)

with

〈c4〉 ≡
∫

dc c4φ(c,�∗). (36)

In the following, the called first Sonine approximation

φ(c,�∗) ≈ φ(0)(c)[1 + a2(�∗)S(2)(c2)], (37)

will be used. Moreover, it will be assumed that |a2(�)| 
 1,
so that the nonlinear terms in a2 can be neglected, at least when
computing low-order moments of φ(c,�∗). This assumption
must be checked a posteriori and might imply a restriction
on the intervals of values of α and � for which the obtained
results are accurate.

When the approximation (37) is employed in Eq. (30) and
the nonlinear in a2 term is neglected an evaluation of the
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integrals gives

ζ ∗
B(α,�∗) ≈ 23/2π (d−1)/2

�(d/2)d

[
1 − α2

2

(
1 + 3a2

16

)
−α

(
π

2

)1/2

�∗ −
(

1 − a2

16

)
�∗2

]
. (38)

In the steady state, the cooling rate must vanish, i.e.,

ζ ∗
B(α,�∗

st ) = 0. (39)

In Ref. [14] this equation was employed to calculate the steady
temperature Tst = m/2(�/�∗

st)
2. To determine a2(α,�∗),

Eq. (29) must be used. The multiplication of that equation
by c4, integration over c, and substitution of Eq. (38) lead to a
closed equation for a2. The calculations are long and tedious,
but they can be easily done by using any of the available
software for symbolic calculation. If the quadratic terms in a2,
as well as a term proportional to a2∂a2/∂�∗, are neglected,
the result is

∂a2

∂�∗ =
[

4

�∗ + 4A1 + B1

A0�∗

]
a2 + 4

�∗ + B0

A0�∗ . (40)

The expressions of A0, A1, B0, and B1 are given in the
Appendix. The above differential equation can be numerically
solved for a fixed value of α and a given initial condition
a2(α,�∗

0) = a2,0. It is important to realize the meaning of
studying a2 as a function of �∗. As discussed above, �∗
changes in time in a monotonic way, approaching its steady
value. In the steady state the cooling rate vanishes by definition.
The consequence is that the kinetic equation (29) has a
singularity at it, and this singularity translates to the equation
for any velocity moment and, in particular, to the equation for
a2. Then, what has been done in the numerical resolution of
the differential equation is to distinguish between trajectories
starting with �∗

0 > �∗
st and with �∗

0 < �∗
st. In the former case

the solution when �∗ decreases was constructed, while in
the latter the solution for increasing �∗ was considered. In
both cases the calculations were stopped when approaching
the singularity. It is worth pointing out that the singularity of
Eq. (40) is not exactly located at �∗ = �∗

st, but very close
to it. The reason is that the contribution to the cooling rate
proportional to a2 in front of ∂a2/∂�∗ has been neglected.

The numerical results obtained for α = 0.9 are shown
in Fig. 1. All the numerical trajectories converge very fast
towards a universal curve a2(α,�∗), then forgetting the initial
conditions from which they started. This is consistent with
the assumption that the distribution function is normal. All
the moments must depend on time only through T (t), but
they cannot depend on the previous history or their initial
values. Therefore, a2(α,�∗) is identified as the hydrodynamic
expression of the second Sonine coefficient. The curve plotted
in the figure has been obtained numerically, although it can be
specified by saying that it is the only solution of the differential
equation (40) being finite for �∗ going to zero.

Linear homogeneous hydrodynamics

The hydrodynamic equation for the temperature in an
homogeneous system is obtained by substituting the hydro-
dynamic expression a2(α,�∗) of the Sonine coefficient into

0 0.05 0.1 0.15 0.2
Δ ∗

-0.04

-0.03

-0.02

a2

a2,st

 Δ∗
 st

a2(Δ
∗)

FIG. 1. (Color online) Sonine coefficient a2 as a function of the
dimensionless scaled velocity �∗ for α = 0.9. The (red) symbols
correspond to several numerical solutions of Eq. (40) obtained
by using different initial conditions. The (black) solid line is the
universal curve to which all the solutions converge. This is precisely
the function a2(�∗), defining the normal one-particle distribution
function in the first Sonine approximation. Also indicated in the
figure are the steady value of a2, denoted by a2,st, and the steady
value of �∗, denoted by �∗

st.

the expression of the cooling rate, Eq. (38), and, afterwards,
the latter into Eq. (11). In this way, it is obtained

∂T (t)

∂s
= −ge(σ,n)ζ

∗
B(α,�∗)T (t), (41)

where ζ
∗
B(α,�∗) is the hydrodynamic expression of the cooling

rate, and a dimensionless time scale s has been defined as

s =
∫ t

0
dt ′

v0(t ′)
�

. (42)

The time s is proportional to the cumulative number of
collisions per particle in the time interval between 0 and t . The
above equation for the temperature is a nonlinear first-order
differential equation to be solved with some initial condition
T (0). For situations very close to the stationary value Tst, the
equation can be linearized about it to get

∂

∂s

δT

Tst
= −γ�∗

st

2

δT

Tst
, (43)

with δT (t) ≡ T (t) − Tst and

γ (α,�∗
st) = −ge(σ,n)

(
∂ζ

∗
B(α,�∗)

∂�∗

)
�∗=�∗

st

= 23/2π
d−1

2 ge(σ,n)

�(d/2)d

×
[(

π

2

)1/2

α + 2

(
1 − a2,st

16

)
�∗

st

]
. (44)

Equation (43) leads to identify the hydrodynamic eigenmode

λ = γ�∗
st

2
, (45)

that is always positive, indicating the linear stability of
the hydrodynamic equation. Moreover, since �∗

st formally
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vanishes in the elastic limit, it is

lim
α→1

λ = 0. (46)

This reflects that, for given �, the decay of an hydrodynamic
perturbation slows down as the system becomes more elastic.
If the Gaussian approximation is used in Eq. (44) by putting
a2,st = 0, a very accurate expression is obtained

γ (α,�∗
st) � 2π

d
2 ge(σ,n)

�(d/2)d

√
α2 + 4(1 − α2)

π
, (47)

consistent with the results reported above for the hydrody-
namic decay of the temperature to its stationary value.

IV. DIRECT MONTE CARLO SIMULATIONS

The direct simulation Monte Carlo (DSMC) method was
devised to mimic the dynamics of a low density gas de-
scribed by the Boltzmann equation [21,22]. It provides a
very efficient tool to generate numerical solutions of the
Boltzmann equation, and also to get information on the
fluctuations and correlations present in the gas. One of
the advantages of the method is that it allows to take advantage
in a direct way of the symmetries of the state under study.
For homogeneous systems, if the attention is restricted to
the one-particle distribution function, there is no need to
consider the spatial coordinates of the particles. Consistently,
no boundary conditions must be introduced. Of course, this
does not hold if the aim of the study would include spatial
correlations. A point to stress is that for homogeneous systems
the only difference between the Boltzmann and the Enskog
equation is the presence of the equilibrium pair correlation
function at contact as a constant prefactor in the collision term
of the Enskog equation. This constant can always be eliminated
by redefining the time scale and, as a consequence, any solution
of the homogeneous Boltzmann equation is directly related to
a solution of the homogeneous Enskog equation.

We have applied the DSMC method to a two-dimensional
system since this is the dimension for which the model being
considered is expected to be more relevant, in the sense of
modeling the horizontal dynamics of a vibrated gas of inelastic
hard spheres, confined to a quasi-two-dimensional geometry
[13,14]. The number of particles employed in the simulations
is N = 1000, and the reported results have been averaged over
5000 trajectories.

In Fig. 2, the time evolution of the dimensionless tempera-
ture T (t)/m�2 = 1/2�∗2 is shown for a system with α = 0.8.
The initial velocity distribution is Gaussian and results for two
different initial granular temperatures, T (0) = 200m�2 and
T (0) = 10m�2, are plotted. One of them is above the steady
temperature and the other one below it. Time is measured
in units of σ/�. In the units used, the dynamics of the
particles does not depend on � [14] and, consistently, the same
happens with the equation for the evolution of the temperature
derived in this paper. The symbols in the figure are simulation
results and the solid line is the theoretical prediction, i.e.,
the solution of Eq. (11) with the temperature rate given
by Eq. (38). A very good agreement between the theory
and simulation is observed. The absence of a significant
initial transient in the simulation behavior before reaching

0 100 200 300 400
t(Δ/σ)

0

50

100

150

200

T/
(m

Δ2 )

FIG. 2. (Color online) Time evolution of the temperature in a
confined system with a coefficient of normal restitution α = 0.8. Both
the temperature and the time are measured in the dimensionless units
indicated in the labels of the axis. The (black) symbols are DSMC
method results obtained with two different initial temperatures and
the (red) solid line is the theoretical prediction derived in the text, i.e.,
the solution of Eq. (11) using Eq. (38).

the hydrodynamic curve is because the velocity distribution
function in the hydrodynamic regime is close to the Gaussian
used as the initial condition in the simulations. Similar results
have been obtained for other values of the coefficient of normal
restitution.

On the scale used in Fig. 2, the influence of the term
proportional to a2 in Eq. (38) cannot be made out. To show that
this term can be clearly identified in the simulation results, in
Fig. 3 the time evolution of the temperature in one of the cases
reported in Fig. 2 is again plotted, now on a larger scale. The
solid line has been obtained by using Eq. (38) with a2 = 0.
The discrepancy with the simulation data is clearly identified.
In Ref. [14], it was shown that the theoretical prediction for

0 100 200 300 400
t(Δ/σ)

10

15

20

25

T/
(m

Δ2 )

FIG. 3. (Color online) Time evolution of the temperature in a
confined system with a coefficient of normal restitution α = 0.8 and
an initial temperature T (0) = 10m�2. Both the temperature and the
time are measured in the dimensionless units indicated in the labels of
the axis. The (black) symbols are DSMC method results and the (red)
solid line is the theoretical prediction derived in the text, Eq. (11),
putting a2 = 0.
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FIG. 4. (Color online) Sonine coefficient a2 as a function of the
dimensionless velocity �∗ for a system with α = 0.9. The symbols are
simulation results obtained by the DSMC method. Two different kinds
of initial conditions have been used: Gaussian velocity distributions
(empty symbols) and square distributions (filled symbols). The
dashed line is the theoretical prediction obtained by solving Eq. (40)
and considering the hydrodynamic regime, as discussed in the main
text. Finally, the solid line is just the translation of the latter so that
the position �∗ of the steady value and the value itself a2,st coincide
with the simulation results.

the steady value of a2 agrees fairly well with the simulation
values. Therefore, such a comparison will be not repeated here.

The time evolution of the Sonine coefficient a2(α) and
the existence of a homogeneous hydrodynamic regime have
also been studied in the simulations. The coefficient has been
evaluated using the exact relationship given in Eq. (35), i.e.,
what has been actually measured is the fourth moment of the
velocity distribution. Two kinds of initial velocity distributions
have been used: Gaussians and square distributions, both with
zero mean average. Of course, the first ones correspond to
a vanishing initial value of a2. Note that in some cases, an
initial interval of values of �∗ lies outside the plotted interval.
The results obtained for α = 0.9 are shown in Fig. 4. In the
simulations, the variation of �∗ is due to the (monotonic)
change in time of the temperature, approaching its steady
value. In all the cases, the Sonine coefficient tends to a
universal, normal curve, afterwards approaching its steady
value. The theoretical prediction a2(�∗), as given in Fig. 1
is included (dashed line). Moreover, also plotted (solid line)
is the curve obtained by translating the theoretical prediction,
so that the steady simulation value of the Sonine coefficient
coincides with the theoretical prediction for it. The discrepancy
of the dashed line is probably due to the linear in the a2

approximation used when deriving Eq. (40), as discussed
in the previous section. A very good agreement is obtained.
Similar results have been obtained for α = 0.8. These results
confirm the existence of homogeneous hydrodynamics for
the collisional model, and also the consistency of assuming
a normal distribution function to describe it.

V. FINAL REMARKS

In this paper, the macroscopic equation for the homoge-
neous evolution of the collisional model recently proposed to

describe the two-dimensional dynamics of confined granular
gases [13,14] has been investigated. It has been shown that
there is a hydrodynamic regime in which the evolution of
the temperature is accurately described by a closed first-order
differential equation. In the context of nonequilibrium statisti-
cal mechanics, hydrodynamics is characterized by a normal
distribution function of the system, having the peculiarity
that all its time dependence occurs through the (granular)
temperature. Thus dimensional analysis implies some scaling
of the distribution function. The precise form of the scaling is
a consequence of the formulation of the model. The latter
involves a characteristic velocity � describing the way in
which the energy is transferred from the vertical degree of
freedom to the horizontal ones through the collisions between
particles. That means that two independent dimensionless
quantities can be made by scaling with the thermal velocity,
one from the particles’ velocity v and another from the
characteristic speed �. In general, the distribution function
of the normal state can depend on both, and this must be taken
into account when deriving the form of the hydrodynamic
equations. It is important to stress that this is not a peculiarity
of the model discussed here. A similar behavior has been found
in granular systems driven by an external stochastic thermostat
[15,16]. With more generality, the same can be expected when
studying hydrodynamics around a steady state of a molecular
fluid [17]. The reason is that the characterization of the steady
state necessarily involves some gradient of a hydrodynamic
field and, therefore, an additional magnitude to be scaled out
with some function of the temperature.

Although the dependence of the normal distribution func-
tion on the scaled characteristic velocity �∗ plays no relevant
quantitative role in the macroscopic evolution of the temper-
ature or in its steady value, it is fundamental to develop a
formally consistent theory. Only taking that dependence into
account, the kinetic equation admits a normal solution. In any
case, this new dependence will clearly show up also when
studying the hydrodynamic fluxes in the system and it will
affect the form of the transport coefficients. It might happen
that it be quite relevant in this context, and gives quantitatively
important corrections to the transport coefficients, affecting
even the stability analysis.

Another relevant issue is that the time-dependent normal
distribution function describing the homogeneous hydrody-
namics cannot be inferred from the distribution of the steady
state since in the steady state the temperature is fixed by
some condition, namely the vanishing of the rate of change of
the temperature. When deriving hydrodynamic equations by
means of an expansion in the gradients of the hydrodynamic
fields, e.g., by an extension of the Chapman-Enskog method
[23], the zeroth-order distribution must describe a state
with arbitrary uniform deviations of all the hydrodynamic
fields. In other worlds, the one to be used is the hydrody-
namic time-dependent homogeneous state discussed in this
paper.
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APPENDIX: EQUATION FOR THE SECOND
SONINE COEFFICIENT

The coefficient a2(α,�∗) appearing in Eq. (37) obeys, in
the linear approximation, Eq. (39), where

A0(α,�∗) = (d + 2)

[
1 − α2

2
−

(
π

2

)1/2

α�∗ − �∗2

]
,

(A1)

A1(α,�∗) = (d + 2)

16

[
3(1 − α2)

2
+ �∗2

]
, (A2)

B0(α,�∗) = (2π )1/2(1 + 2d + 3α2 + 4�∗2)α�∗

− 3 + 4�∗4 + α2 + 2α4 − 2d(1 − α2 − 2�∗2)

+ 2�∗2(1 + 6α2), (A3)

B1(α,�∗) =
(

π

2

)1/2

[2 − 2d(1 − α) + 7α + 3α3]�∗

− 1

16
{85 + 4�∗4 − 18(3 + 2α2)�∗2

− (32 + 87α + 30α3)α − 2d[6�∗2

− (1 + α)(31 − 15α)]}. (A4)
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