13,567 research outputs found

    Measuring the Weibull modulus of microscope slides

    Get PDF
    The objectives are that students will understand why a three-point bending test is used for ceramic specimens, learn how Weibull statistics are used to measure the strength of brittle materials, and appreciate the amount of variation in the strength of brittle materials with low Weibull modulus. They will understand how the modulus of rupture is used to represent the strength of specimens in a three-point bend test. In addition, students will learn that a logarithmic transformation can be used to convert an exponent into the slope of a straight line. The experimental procedures are explained

    A DEIM Induced CUR Factorization

    Full text link
    We derive a CUR matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given matrix AA, such a factorization provides a low rank approximate decomposition of the form ACURA \approx C U R, where CC and RR are subsets of the columns and rows of AA, and UU is constructed to make CURCUR a good approximation. Given a low-rank singular value decomposition AVSWTA \approx V S W^T, the DEIM procedure uses VV and WW to select the columns and rows of AA that form CC and RR. Through an error analysis applicable to a general class of CUR factorizations, we show that the accuracy tracks the optimal approximation error within a factor that depends on the conditioning of submatrices of VV and WW. For large-scale problems, VV and WW can be approximated using an incremental QR algorithm that makes one pass through AA. Numerical examples illustrate the favorable performance of the DEIM-CUR method, compared to CUR approximations based on leverage scores

    Photon scattering by a three-level emitter in a one-dimensional waveguide

    Full text link
    We discuss the scattering of photons from a three-level emitter in a one-dimensional waveguide, where the transport is governed by the interference of spontaneously emitted and directly transmitted waves. The scattering problem is solved in closed form for different level structures. Several possible applications are discussed: The state of the emitter can be switched deterministically by Raman scattering, thus enabling applications in quantum computing such as a single photon transistor. An array of emitters gives rise to a photonic band gap structure, which can be tuned by a classical driving laser. A disordered array leads to Anderson localization of photons, where the localization length can again be controlled by an external driving.Comment: 17 pages, 8 figure

    Quantum emitters coupled to surface plasmons of a nano-wire: A Green function approach

    Full text link
    We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nano-wire using a Green function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well as a plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in the metal are discussed. In case of two atoms, we observe Dicke sub- and superradiance resulting from their plasmon-mediated interaction. Based on this phenomenon, we propose a scheme for a deterministic two-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling.Comment: 12 pages, 16 figure

    Mixed mode stress intensity factors for semielliptical surface cracks

    Get PDF
    The three-dimensional equations of elasticity are solved for a flat elliptical crack which has nonuniform shear stresses applied to its surfaces. An alternating method is used to determine the mode two and mode three stress intensity factors for a semielliptical surface crack in the surface of a finite thickness solid. These stress intensity factors are presented as a function of position along the crack border for a number of crack shapes and crack depths. This same technique is followed to determine the mode one stress intensity factors for the semielliptical surface crack which has normal loading applied to its surface. Mode one stress intensity factors are presented and compared with the results obtained from previous work

    Fractional quantum Hall states of atoms in optical Lattices

    Full text link
    We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. We demonstrate that in a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type and we show how these states can be reached by melting a Mott insulator state in a super lattice potential. Finally we discuss techniques to observe these strongly correlated states.Comment: 4+epsilon pages including 3 figures. V2: Changes in the presentatio

    Correlated Gaussian method for dilute bosonic systems

    Full text link
    The weakly interacting trapped Bose gases have been customarily described using the mean-field approximation in the form of the Gross-Pitaevskii equation. The mean-field approximation, however, has certain limitations, in particular it can not describe correlations between particles. We introduce here an alternative variational approach, based on the correlated Gaussian method, which in its simplest form is as fast and simple as the mean-field approximation, but which allows successive improvements of the trial wave-function by including correlations between particles.Comment: 9 pages, Workshop on Nuclei and Mesoscopic Physics, NSCL MSU, 200

    Strong coupling of single emitters to surface plasmons

    Get PDF
    We propose a method that enables strong, coherent coupling between individual optical emitters and electromagnetic excitations in conducting nano-structures. The excitations are optical plasmons that can be localized to sub-wavelength dimensions. Under realistic conditions, the tight confinement causes optical emission to be almost entirely directed into the propagating plasmon modes via a mechanism analogous to cavity quantum electrodynamics. We first illustrate this result for the case of a nanowire, before considering the optimized geometry of a nanotip. We describe an application of this technique involving efficient single-photon generation on demand, in which the plasmons are efficiently out-coupled to a dielectric waveguide. Finally we analyze the effects of increased scattering due to surface roughness on these nano-structures.Comment: 34 pages, 7 figure
    corecore