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We propose a method that enables strong, coherent coupling between individual optical emitters
and electromagnetic excitations in conducting nano-structures. The excitations are optical plasmons
that can be localized to sub-wavelength dimensions. Under realistic conditions, the tight confinement
causes optical emission to be almost entirely directed into the propagating plasmon modes via a
mechanism analogous to cavity quantum electrodynamics. We first illustrate this result for the case
of a nanowire, before considering the optimized geometry of a nanotip. We describe an application
of this technique involving efficient single-photon generation on demand, in which the plasmons
are efficiently out-coupled to a dielectric waveguide. Finally we analyze the effects of increased
scattering due to surface roughness on these nano-structures.

I. INTRODUCTION

In recent years there has been substantial interest in nanoscale optical devices based on local electric field enhance-
ments and electromagnetic surface modes (surface plasmons) associated with sub-wavelength metallic systems. Surface
plasmons [1] are electromagnetic excitations associated with charge density waves on the surface of a conducting ob-
ject. The unique properties of plasmons on nanoscale metallic systems have produced a number of dramatic observed
effects, such as single molecule detection with surface-enhanced Raman scattering (SERS) [2, 3], enhanced trans-
mission through sub-wavelength apertures [4, 5], and enhanced photoluminescence from quantum wells [6]. There
is also considerable interest in these systems in applications such as biosensing [7], sub-wavelength imaging [8, 9],
and waveguiding and switching devices below the diffraction limit [10, 11, 12]. Such sub-wavelength waveguiding of
plasmons in metallic nanowires has been observed in a number of recent experiments [13, 14, 15].

At the same time, spurred in part by rapid developments in the fields of quantum computation and quantum
information science, there has been strong interest in exploring new physical mechanisms that enable coherent coupling
between individual quantum systems and photon fields. Such a mechanism would enable quantum information to
be passed over long distances and long-range interactions between systems. These features are not only essential for
quantum communication [16, 17] but would also facilitate the scalability of quantum computers [18]. The required
coupling between emitters and photons is difficult but has been achieved in a number of systems that reach the so-called
“strong-coupling” regime of cavity quantum electrodynamics (QED) [19, 20, 21]. Recently several approaches to reach
this regime on a chip at microwave frequencies have been suggested [22, 23, 24] and experimentally observed [21],
which utilize coupling between emitters and modes of superconducting transmission lines. A key feature of these
transmission lines is the reduction of the effective mode volume Veff for the photons, which in turn results in a
substantial increase of the emitter-field coupling constant g ∝ 1/

√
Veff. Realization of analogous techniques with

optical photons would open the door to many potential applications in quantum information science, and in addition
lead to smaller mode volumes and faster interaction times.

In this paper we describe a method that enables strong, coherent coupling between individual emitters and electro-
magnetic excitations in conducting nano-structures on a chip at optical frequencies, via excitation of guided optical
plasmons localized to nanoscale dimensions. The strong coupling occurs due to the sub-wavelength confinement and
small mode volumes associated with the surface plasmon modes. We show that under realistic conditions optical
emission can be almost entirely directed into these modes due to their large Purcell factors, in a manner analogous
to cavity QED. We first examine the case of a cylindrical nanowire, a simple geometry where the relevant physics
can be understood analytically, before considering the more optimized geometry of a conducting nanotip. We show
that effective Purcell factors exceeding ∼103 are possible in these systems, limited only by metal losses at optical
frequencies. Because of these losses the plasmon modes themselves are not suitable as carriers of information over long
distances. However, we show that the plasmon excitation can be efficiently out-coupled to a propagating photon by
evanescently coupling to a nearby co-propagating dielectric waveguide, as illustrated schematically in Fig. 1. This can
be used, e.g., to create an efficient single photon source, or as part of an architecture to perform controlled interactions
between distant qubits. The achievable coupling between the plasmon and waveguide systems can be much stronger
than the plasmon dissipation rates, and we find that single-photon generation efficiencies exceeding 95% are possible
for the simple geometries considered here.
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This paper is organized as follows. In Sec. II we calculate the mode structure of a conducting nanowire surrounded
by some positive dielectric medium. We show that the nanowire supports one fundamental plasmon mode with
significantly reduced phase velocity, which is tightly localized on a scale ∼R around the wire surface. We also
calculate the dissipation rate of the fundamental mode as it propagates along the nanowire, due to metallic losses. In
Sec. III we calculate the emission properties of a dipole emitter near the nanowire as a function of emitter position and
wire radius. We show that under certain circumstances, emission into the guided plasmon modes is greatly enhanced
over decay into radiative and non-radiative channels. In fact, when optimized, the probability of emission into the
plasmon mode approaches almost unity for small R and is limited only by dissipative loss of the metal. Because of
its simple geometry, the nanowire is a system where the relevant physics can be understood and derived analytically,
and from which we can proceed to design and understand better-optimized systems. In Sec. IV, we consider one such
system, a conducting nanotip. It will be seen that the enhancement of emission into plasmon modes found earlier is
not exclusive to nanowires but arises quite generally as a feature of conducting nano-structures. However, we will show
that the nanotip is an optimized geometry that can significantly reduce the effects of propagative losses even while
preserving this enhancement. In Sec. V we consider the problem of out-coupling the plasmon modes, and study in
detail the interaction between the plasmon modes of our nano-structures and the guided modes of a nearby dielectric
waveguide. We show that the plasmon modes can be efficiently out-coupled to the waveguide, and we propose an
architecture for efficient single-photon generation on demand based on a tiered emitter/nano-structure/waveguide
system. We calculate the expected efficiencies for single photon generation, taking fully into account the propagative
losses of the plasmons, the finite Purcell factors governing the interactions with the dipole emitter, and the non-
unity coupling efficiency between the plasmon and waveguide modes. In Sec. VI, we consider the effects of possible
imperfections to the system, in particular, the adverse effect of surface roughness on our nano-structures. In general,
surface roughness can lead to radiative scattering of plasmons as well as increased non-radiative dissipation, which
results in larger losses as the plasmons propagate along the structure. We calculate the effects of these two processes
and find only moderate increases in the total loss under reasonable parameters. Finally, in Sec. VII we summarize
our results, while outlining possible physical realizations and discussing possible future directions of research in this
area.

II. PLASMON MODES ON A NANOWIRE

The method for calculating the electromagnetic modes of a nanowire is briefly outlined here, with details of the
calculation given in Appendix A. We consider a cylinder of radius R of dimensionless electric permittivity ǫ2, which
is centered along the z-axis and surrounded by a second dielectric medium ǫ1. While we are particularly interested
in the case of a conducting nanowire surrounded by some lossless positive dielectric (Re ǫ2 < 0, ǫ1 > 0), we note that
at this point the discussion is quite general. Like any other simple geometry with a high degree of symmetry, one
can use separation of variables and find field solutions E,H to Maxwell’s Equations in each dielectric region [25, 26].
In cylindrical coordinates, the electric field is given by Ei(r) = Ei,mEi,m(ki⊥ρ)e

imφeik‖z, where i = 1, 2 denotes the
regions outside and inside the cylinder, respectively. Here k‖ is the longitudinal component of the wavevector, which

is related the vacuum wavevector k0 = ω/c, electric permittivity ǫi, and transverse wavevector ki⊥ by ǫik
2
0 = k2

‖ +k2
i⊥,

and m is an integer characterizing the winding of the mode. A similar expression holds for the magnetic field H. For
future reference, we also define the vacuum wavelength λ0 = 2π/k0, and ki =

√
ǫik0 as the wavevector in medium

i. The coefficients Ei,m and Hi,m multiplying the fields are not arbitrary but instead must satisfy a set of equations
that enforces the necessary boundary conditions at the dielectric interface ρ = R. The existence of a non-trivial
solution requires that the matrix corresponding to this linear system have zero determinant (detM = 0), which upon
simplifying yields the mode equation [25, 26],

m2k2
‖

R2

(

1

k2
2⊥

− 1

k2
1⊥

)2

=

(

1

k2⊥

J ′
m(k2⊥R)

Jm(k2⊥R)
− 1

k1⊥

H ′
m(k1⊥R)

Hm(k1⊥R)

)(

k2
2

k2⊥

J ′
m(k2⊥R)

Jm(k2⊥R)
− k2

1

k1⊥

H ′
m(k1⊥R)

Hm(k1⊥R)

)

. (1)

One can use the above equation, for example, to determine the allowed values of k‖ as functions of m,R, and ǫi.
We now focus on the case of a sub-wavelength, conducting metal wire surrounded by a normal, positive dielectric.

In Fig. 2 we plot the allowed wavevectors k‖, as determined through Eq. (1), for such a system as a function of R
for a few lowest-order modes in m. For concreteness, all numerical results presented in this paper are for a silver
nanowire (or later, nanotip) at room temperature, λ0 = 1 µm, and with a surrounding dielectric ǫ1 = 2, although the
physical processes described are not specific to silver or to some narrow frequency range. The electric permittivity
of silver at this frequency is ǫ2≈ − 50 + 0.6i, as given in [27]. In plotting Fig. 2 we have temporarily ignored the
dissipative imaginary part of ǫ2, although we will address its effect later. Ignoring Im ǫ2 results in purely real values
of k‖.
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We first qualitatively discuss the important features of the plasmon modes illustrated in Fig. 2, before deriving them
more carefully. It is clear from the figure that the longitudinal component of the wavevector exceeds the wavevector

in uniform dielectric, k‖ > k1, which in turn causes the perpendicular component ki⊥ =
√

k2
i − k2

‖ ≡ iκi⊥ to be purely

imaginary. Physically these relationships imply that the plasmon modes are non-radiative and are confined near the
metal/dielectric interface, with the length scale of confinement determined by ∼1/κi⊥. Furthermore, these plasmon
modes cannot couple directly to radiative fields, which have wavevectors k‖≤k1. Of particular interest is the behavior
of the plasmon modes in the nanowire limit |ki|R≪1. In this limit, all higher-order modes (|m|≥1) exhibit a cutoff
as R→0, as derived in Appendix B, while the m = 0 fundamental plasmon mode exhibits a unique k‖∝1/R behavior.
Physically, in this limit, the m = 0 mode can be interpreted approximately as a quasi-static configuration of field
and associated charge density wave on the wire. As such, R becomes the only relevant length scale, as the length
scales 1/|ki| associated with electrodynamic behavior become unimportant. From the 1/R scaling of k‖ it follows that
κ1⊥∝1/R, which states that the field outside the wire is tightly localized on a scale ∝R around the metal surface.
The corresponding small effective transverse mode area Aeff∝R2 is responsible for the strong interaction strength of
the fundamental mode with nearby emitters, as will be discussed in following sections. We note that this behavior
contrasts sharply with that of, e.g., a sub-wavelength normal dielectric waveguide or optical fiber, which runs into a
“confinement problem” where the evanescent tails outside the device become exponentially large as R→0 [28].

In practice ǫ2 is not purely real but has a small imaginary part corresponding to metal losses (heating) at optical
frequencies. Its effect is to add a small imaginary component to k‖ corresponding to dissipation as the plasmon
propagates along the wire. In the inset of Fig. 2 we plot Re k‖/Im k‖ for the fundamental mode as a function of R.
This quantity is proportional to the decay length in units of the plasmon wavelength λpl≡2π/Re k‖. As R decreases,
it can be seen that this ratio decreases monotonically but approaches a nonzero constant, as will be shown below. For
silver at λ0 = 1 µm and room temperature and ǫ1 = 2 this constant is approximately 140. The fact that this ratio
does not approach zero even as R→0 is important for potential applications involving plasmons on nanowires, as it
implies that the plasmons can still travel multiple λpl for devices of any size. We also note that while all numbers and
figures presented here are for room temperature, operating at lower temperatures might somewhat reduce the value
of Im ǫ2 due to decreased losses from phonon-assisted absorption [29].

We now analyze the fundamental mode more carefully. For m = 0, one sees in Eq. (1) that one of the two terms
on the right-hand side must equal zero. It can be shown that setting the first term to zero corresponds to a TE
mode, while the other case corresponds to a TM mode (see Appendix A). The TE mode equation does not have any
solutions, and thus the fundamental mode is a TM mode that satisfies the simplified equation [10, 30]

k2
2

k2⊥

J ′
0(k2⊥R)

J0(k2⊥R)
− k2

1

k1⊥

H ′
0(k1⊥R)

H0(k1⊥R)
= 0. (2)

The fields themselves are given by (see Appendix A)

E1 = b1

(

ik‖k1⊥

k2
1

H ′
0 (k1⊥ρ) ρ̂+

k1⊥
2

k2
1

H0 (k1⊥ρ) ẑ

)

eik‖z,

E2 = b2

(

ik‖k2⊥

k2
2

J ′
0 (k2⊥ρ) ρ̂+

k2⊥
2

k2
2

J0 (k2⊥ρ) ẑ

)

eik‖z,

H1 =
i

ωµ0
k1⊥b1H

′
0 (k1⊥ρ) e

ik‖zφ̂,

H2 =
i

ωµ0
k2⊥b2J

′
0 (k2⊥ρ) e

ik‖zφ̂, (3)

while the boundary conditions between the two dielectrics require that

b1
b2

=
k2⊥

k1⊥

J ′
0 (k2⊥R)

H ′
0 (k1⊥R)

. (4)

The 1/R dependence of k‖, ki⊥ in the nanowire limit can be confirmed mathematically by considering Eq. (1) in
the non-retarded limit (c → ∞). In this case, ki⊥ = ik‖ and the mode equation (2) reduces to

ǫ2
ǫ1

=
K ′

0(k‖R)I0(k‖R)

K0(k‖R)I ′0(k‖R)
, (5)

where Im,Km are modified Bessel functions. The solution to Eq. (5) requires k‖R = C−1 to be constant and proves
the aforementioned scaling law for k‖. It is also straightforward to see that when ǫ2 acquires a small imaginary
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component, the constant C−1 becomes complex as well, and that Re k‖/Im k‖ takes on some fixed, non-zero value.
No closed-form solution exists for the equation above, although when |k‖R|≪1 (corresponding to large |ǫ2/ǫ1|) the
equation asymptotically approaches

ǫ2
ǫ1

=
2

(γ − log 2 + logC−1)(C−1)2
, (6)

where γ≈0.577 is Euler’s constant.
Finally, it should be noted that the components of Ei in Eq. (3) are proportional to k‖ki⊥ or k2

i⊥, while Hi is
proportional to ki⊥. Thus, in the nanowire limit when k‖, |ki⊥|∝1/R, the magnetic fields are a factor of R smaller
than the electric fields, which is consistent with this mode being roughly a quasi-static configuration.

III. SPONTANEOUS EMISSION NEAR A METAL NANOWIRE

The small mode volume associated with the fundamental plasmon mode of a nanowire offers a possible mechanism
to achieve strong coupling with nearby optical emitters, in analogy to the methods of [21, 22, 23, 24]. In this section we
derive more rigorously the interaction between an emitter and nanowire, and show that under certain circumstances
the small mode volume indeed leads to strongly preferential spontaneous emission into the guided plasmon modes via
a mechanism equivalent to the Purcell effect [31] in cavity QED.

The spontaneous emission rate of a dipole emitter in general becomes altered from its free-space value in the presence
of some dielectric body. In our system of interest, the dipole can possibly lose power radiatively to propagating photon
modes, through excitation of the guided plasmon modes, or through non-radiative loss (heating) in the wire. The
dipole in consideration can physically be formed by a single atom, a defect in a solid-state system, or any other system
with a dipole-allowed transition. In Sec. III A we calculate the radiative and non-radiative rates using a quasi-static
approach, while waiting until Sec. III B to treat the plasmon decay rate more thoroughly. In Sec. III C, we show how
the efficiency of emission into the plasmon modes can be optimized to yield Purcell factors in excess of ∼5×102, and
discuss the physical origins of this limit.

A. Radiative and non-radiative decay rates

In this subsection we derive formulas for the decay rates of a dipole near a metal nanowire into radiative and
non-radiative channels. This calculation closely follows that of [32], but is briefly presented here for completeness.

It is well-known that spontaneous emission rates can be obtained via classical calculations of the fields due to an
oscillating dipole near the dielectric body [33], and this method will be employed here. Specifically, we consider a
(classical) oscillating dipole p0e

−iωt oriented along ρ̂ and positioned a distance d from the center of the wire, and
wish to calculate the total fields of the system. For nano-structures one can make a considerable simplification and
consider the fields in the quasi-static limit (H≈0) [32], which satisfy

∇ ·D = ρext, (7)

∇× E = 0. (8)

Here ρext(r) is the external charge density. In the system of interest the external source is a dipole located at position
r′ outside the wire (with radial coordinate ρ′ = d), which has a corresponding charge configuration

ρext(r, r
′) = (p0 · ∇′) δ (r − r′) . (9)

For simplicity we omit the harmonic time dependence from our expressions for the source and all fields. Note that the
δ(r − r′) term above corresponds to a (unitless) point charge source, while the operator (p0 · ∇′) generally converts
the point charge solution to that of a dipole. It is therefore convenient to write Ei in similar form,

Ei(r, r
′) = −∇ (p0 · ∇′)Φi (r, r′) , (10)

where Φi(r, r
′) are “pseudopotentials” that satisfy ∇2Φ1 = −δ(r− r′)/ǫ0ǫ1 and ∇2Φ2 = 0. Here the indices 1, 2 again

denote the regions outside and inside the cylinder, respectively. Clearly, Φ physically corresponds to the potential
due to a point charge at r′, while the dipole potential follows from Φdip ≡ (p0 · ∇′)Φ.

To solve for the fields, it is convenient to further separate Φ1 into “free” and “reflected” components Φ0 and Φr,
respectively, where Φr represents a source-free contribution that ensures that boundary conditions are satisfied and
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Φ0 is the solution for a point charge in a medium of uniform electric permittivity ǫ1. We will expand the known
source term Φ0 in a basis appropriate for the cylindrical geometry, and expand the source-free terms Φr,2 in a similar
basis that satisfies Laplace’s Equation (∇2Φr,2 = 0). The unknown coefficients multiplying the basis functions of Φr,2

will then be determined by enforcing the proper boundary conditions at the dielectric interface. Mathematically, the
proper expansions are given by

Φ0(r, r
′) =

1

4πǫ0ǫ1

1

|r− r′|

=
1

2π2ǫ0ǫ1

∞
∑

m=0

(2 − δm,0) cos (m(φ− φ′))

∫ ∞

0

dh cos (h(z − z′))Km(hρ′)Im(hρ) (ρ < ρ′), (11)

Φr(r, r
′) =

1

2π2ǫ0

∞
∑

m=0

(2 − δm,0) cos (m(φ− φ′))

∫ ∞

0

dh αm(h) cos (h(z − z′))Km(hρ′)Km(hρ), (12)

Φ2(r, r
′) =

1

2π2ǫ0

∞
∑

m=0

(2 − δm,0) cos (m(φ− φ′))

∫ ∞

0

dh βm(h) cos (h(z − z′))Km(hρ′)Im(hρ), (13)

where αm(h), βm(h) thus far are unknown amplitude coefficients. We obtain a set of two coupled equations for
αm(h), βm(h) by requiring continuity of Φ and D⊥ at the boundary, ρ = R. Because of the translational symmetry
of the system, these equations are uncoupled in h and can easily be solved (this is in contrast to the case where
translational symmetry is broken due to surface roughness, as discussed in Sec. VI). The solutions are given by [32]

αm(h) =
(ǫ− 1) I ′m(hR)Im(hR)

ǫ1Im(hR)K ′
m(hR) − ǫ2Km(hR)I ′m(hR)

,

βm(h) =
Im(hR)K ′

m(hR) −Km(hR)I ′m(hR)

ǫ1Im(hR)K ′
m(hR) − ǫ2Km(hR)I ′m(hR)

, (14)

where we have defined ǫ ≡ ǫ2/ǫ1. Note that Eq. (14) along with Eqs. (11)-(13) give the total electric field of the dipole
and wire system.

To calculate the radiative emission into free space, we consider the far-field properties of the system. Physically,
the presence of the emitter induces some dipole moment δp in the nanowire, which results in a total radiated power
proportional to the square of the total dipole moment of the system, Prad ∝ Γrad ∝ |p0 + δp|2. We can determine
δp by finding the dipole-like contribution to the “reflected” potential Φdip,r = (p0 · ∇′)Φr(r, r

′) far away from the
source, which on physical grounds must behave like ρ−2 for large ρ. It is straightforward to show that the m = 1
term in Eq. (12) is responsible for this contribution, with all other m terms yielding faster decays in ρ. Because of

the asymptotic behavior of Km(x)≈
√

π/2xe−x when x≫1, it can be seen that for large ρ the integrand appearing

in (12) is significant only over a small region h
<∼ ρ−1. As a result, we can safely replace K1(hρ

′) and α1(h) by their
expansions around h = 0. After this simplification the integral can in fact be evaluated exactly and yields

Φ(m=1)
r ≈ − 1

2π2ǫ0ǫ1
cos (φ− φ′)

∫ ∞

0

dh cos h (z − z′)
1

hρ′
K1(hρ)

ǫ− 1

ǫ+ 1
h2R2

= − 1

4πǫ0ǫ1

ǫ− 1

ǫ+ 1
cos (φ− φ′)

R2

ρ′
ρ

(ρ2 + (z − z′)2)3/2
, (15)

with a corresponding reflected potential

Φ
(m=1)
dip,r (r, r′) = (p0 · ∇′)Φ(m=1)

r (r, r′)

=
p0

4πǫ0ǫ1

ǫ− 1

ǫ+ 1
cos (φ− φ′)

R2

d2

ρ

(ρ2 + z2)3/2
. (16)

In evaluating the above expression we have chosen ρ′ = d and z′ = 0 as the dipole coordinates, and p0 = p0ρ̂ as the
dipole orientation. Comparing Eq. (16) to the potential due to a dipole δp in uniform dielectric ǫ1, Vδp = δp·r

4πǫ0ǫ1r3 ,
we can readily identify

δp = p0
ǫ− 1

ǫ+ 1

R2

d2
ρ̂ (17)
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as the induced dipole moment in the wire, from which it follows that the radiative spontaneous emission rate is given
by [32]

Γrad

Γ0
=

∣

∣

∣

∣

1 +
ǫ− 1

ǫ+ 1

R2

d2

∣

∣

∣

∣

2

. (d≥R) (18)

Here Γ0 is defined to be the spontaneous emission rate in uniform dielectric ǫ1 [34]. Away from the plasmon reso-
nance (ǫ≈ − 1), the radiative decay rate changes slightly from Γ0 and reflects some moderate change in the radia-
tive density of states in the vicinity of the nanowire. We note that this decay rate is well-behaved in either limit
R, (d−R)→0.

To calculate the other decay rates, one utilizes the fact that the total power loss of an oscillating dipole is proportional
to the electric field in quadrature at the dipole’s location, specifically, Γtotal∝Im (p0 ·E1(r

′, r′)). Having divided up
E1 into free and reflected components, we note that the contribution to E1 from the free field simply is associated
with the decay rate in uniform dielectric ǫ1, and thus we concentrate on the contribution from Φr(r, r

′). First we note
that the coefficient α0(h) derived in Eq. (14) contains a pole at the point where the denominator vanishes. This pole
corresponds to an excitation of a natural mode (the fundamental plasmon mode) of the system. This can immediately
be seen by comparing the denominator of α0 to Eq. (5), which gives the plasmon mode in the nanowire limit. The pole
lies at hR = C−1 and agrees with the plasmon wavevector derived in Sec. II, as expected. Evaluating the contribution
of this pole to Er(r

′, r′) gives the decay rate into the fundamental plasmon mode, and is discussed more carefully
in the next subsection. At the same time, in the limit d→R one expects some type of divergence to occur in the
non-radiative decay rate. Physically, such a divergence results from the large currents in the wire generated by the
near-field of the dipole and their resulting dissipation. We can find the leading-order term to this divergent decay
rate by carefully evaluating the leading-order divergence in the reflected field.

In particular, while the pole associated with the m = 0 term in Φr yields the spontaneous emission rate into the
plasmon modes, we will show that the mathematical origin of the divergence is the significant contribution to the field
of an infinite number of terms with m > 0 as d→R. Specifically, in this limit, for a dipole oriented along ρ̂,

Γnon-rad

Γ0
≈ 6πǫ0

k3
0

√
ǫ1

Im ρ̂ · Er(r
′, r′)

p0

= − 6πǫ0
k3
0

√
ǫ1

Im ρ̂ · ∇ (ρ̂ · ∇′)Φr(r, r
′)
∣

∣

∣

r=r′

≈ − 6

πk3
0

√
ǫ1

∞
∑

m=1

∫ ∞

0

dh h2K ′
m(hd)2Im αm(h)

≡ 6

πk3
0

√
ǫ1

∞
∑

m=1

∫ ∞

0

dh fm(h, d,R). (19)

The divergent nature of the above expression can be shown by examining the asymptotic behavior of the functions
fm,

fm(h, d,R) ≈















m

2d2ǫ1
Im

(

ǫ− 1

ǫ+ 1

)(

R

d

)2m

h→0

h

2dǫ1
Im

(

ǫ− 1

ǫ+ 1

)

e−2h(d−R) h→∞
. (20)

From the above expressions, we see that fm as a function of h has a characteristic width of about [2(d−R)]
−1

,
yet at the same time the quantity m(R/d)2m reaches a maximum around m̃ ≈ d

2(R−d) as d→R. This confirms the

non-vanishing contribution of an infinite number of terms with m > 0 to the decay rate. The exact behavior of
the functions fm at small h, including the peak around m̃, and the tails at large h is well-modelled by a Lorentzian
approximation,

fm(h, d,R)≈
m

2d2ǫ1
Im
(

ǫ−1
ǫ+1

)

(

R
d

)2m

1 + h2 (d−R)2
, (21)

which allows the integration and sum in Eq. (19) to be performed exactly. The resulting decay rate is given by

Γnon-rad

Γ0
≈ 3

16k3
0(d−R)3ǫ

3/2
1

Im

(

ǫ− 1

ǫ+ 1

)

. (22)
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Note that for |ǫ|≫1 and small Im ǫ, Im
(

ǫ−1
ǫ+1

)

≈2Im ǫ/ (Re ǫ)2, which makes it clear that the non-radiative spontaneous

emission rate is proportional to the dissipative part of the electric permittivity.

B. Decay rate into plasmon modes

In this subsection we quantify the spontaneous emission rate Γpl of a dipole into the surface plasmon modes on a
nanowire. As shown in the previous subsection, the coefficient α0(h) characterizing the reflected field contains a pole
at h = C−1/R that corresponds to excitation of the natural surface plasmon mode of the system. The contribution
of this pole to the quantity Im (p0 · E1(r

′, r′)) yields the spontaneous emission rate into the plasmon modes and can
readily be evaluated. Before proceeding further, we first note that in the presence of metal losses, the distinction
between Γpl and Γnon-rad is not perfectly well-defined, since the plasmons eventually dissipate due to heating as well.
Thus, for concreteness, we will define Γpl to be the decay rate resulting from the pole in the limit that Im ǫ2 = 0,
and take the plasmon wavevector k‖ and C−1 to be purely real in this subsection. In particular, for a dipole oriented
along ρ̂,

Γpl

Γ0
=

6πǫ0
k3
0

√
ǫ1

(

Im ρ̂ · Er(r
′, r′)

p0

)

pole

= − 6πǫ0
k3
0

√
ǫ1

Im
(

ρ̂ · ∇ (ρ̂ · ∇′)Φr(r, r
′)
∣

∣

r=r′

)

pole

= − 3

πk3
0

√
ǫ1

Im

(
∫ ∞

0

dh h2K2
1 (hd)α0(h)

)

pole

, (23)

where we have explicitly indicated that we are interested in the pole contribution to the expressions above. It is
convenient to explicitly separate out the pole of α0, and approximately describe the behavior around the pole’s
vicinity by

α0(h) ≈ 1

ǫ1

(ǫ2 − ǫ1)I1(C−1)I0(C−1)

(h− C−1/R)R dχ(C−1)
dx

, (24)

where

χ(x) = ǫ1I0(x)K
′
0(x) − ǫ2K0(x)I

′
0(x). (25)

This separation allows us to easily evaluate Eq. (23) and yields the decay rate

Γpl = αplΓ0
K2

1(C−1d/R)

(k0R)3

≈ αplΓ0
K2

1(κ1⊥d)

(k0R)3
, (26)

where we have identified κ1⊥≈C−1/R in the nanowire limit. The coefficient αpl is given by

αpl =
3(ǫ1 − ǫ2)

ǫ
3/2
1

C2
−1I1(C−1)I0(C−1)

dχ(C−1)/dx
(27)

and most importantly depends only on ǫ1,2.
While the derivation above is straightforward, one can gain some physical understanding of the result and its relation

to the Purcell effect by using Fermi’s Golden Rule. This rule states that, once the plasmon modes are quantized, the
decay rate is given by

Γpl = 2πg2(r, ω)D(ω), (28)

where g(r, ω) is the position-dependent coupling strength between the quantized field and emitter, and D(ω) is the
plasmon density of states on the nanowire.

Canonical quantization of a dispersive medium is a difficult and subtle problem [35, 36, 37, 38, 39], and thus here
we present a simple ad hoc quantization scheme that captures the relevant physics. To quantize the plasmon modes,
we take the field solution in Eq. (3) and normalize the energy (again, ignoring Im ǫ2) to

h̄ω =

∫

d3r

(

ǫ0
d

dω
(ωǫ(r, ω))

∣

∣

∣
Ê(r)

∣

∣

∣

2

+ µ0

∣

∣

∣
Ĥ(r)

∣

∣

∣

2
)

. (29)
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The electric field term in Eq. (29) gives the correct expression for the classical energy density in a dispersive

medium [26], and the coupling parameter at position r then simply follows through the relation g(r) = p0 · Ê(r)/h̄.
To evaluate the dispersive term, we assume that the conductor forming the wire exhibits Drude-like behavior with
plasma frequency ωp, and that we operate well below the plasma frequency so that the permittivity is given by

ǫ2(ω) = 1 − ω2
p/ω

2≈ − ω2
p/ω

2. For such a metal this dispersive term is positive and given by d
dω (ωǫ2(ω))≈|ǫ2(ω)|.

Furthermore, we recall from Sec. II that in the nanowire limit the magnetic fields are smaller than the electric fields
by a factor R. Combining these results, we find that the field energy is primarily electric, and

h̄ω≈ǫ0
∫

d3r|ǫ(r, ω)|
∣

∣

∣
Ê(r)

∣

∣

∣

2

. (30)

Evaluating this equation readily leads to a normalization coefficient b1≈
√

h̄ωk4
0ǫ

2
1R

2/ǫ0Ṽ C4
−1L, where Ṽ is a dimen-

sionless parameter that depends only on the permittivities ǫ1,2,

Ṽ =
8ǫ21
πC2

−1

(

1

|ǫ2|
K2

1 (C−1)

I2
1 (C−1)

∫ C−1

0

dxx(I2
1 (x) + I2

0 (x)) +
1

ǫ1

∫ ∞

C−1

dxx(K2
1 (x) +K2

0 (x))

)

. (31)

For a dipole oriented in the radial direction at position ρ′ = d, the position-dependent coupling strength immediately
follows,

g(d) =
p0

h̄
b1

∣

∣

∣

∣

k‖k1⊥

k2
1

H ′
0 (k1⊥d)

∣

∣

∣

∣

=
2

π
p0

√

ω

h̄ǫ0Veff
K1(κ1⊥d). (32)

The effective mode volume defined above is given by Veff = Ṽ R2L and is proportional to the cross-sectional area of
the wire and the quantization length L. This result reflects the transverse confinement of the plasmon on a scale
comparable to R. Note that the presence of the 1/

√
Veff term in g is responsible for the strong coupling between

plasmon modes and emitter as R→0.
Assuming a Drude model, a scaling law for the density of states D(ω) = 2(L/2π)(dk‖/dω) can also be derived (the

factor of 2 accounts for forward- and backward-propagating plasmons):

D(ω) =
L

π

dk‖

dω

≈ L

π

d

dω

(

C−1 (ǫ1, ǫ2(ω))

R

)

≈ L

πR

∂C−1

∂ǫ2

2|ǫ2|
ω

. (33)

The important feature of Eq. (33) is the 1/R dependence due to the reduced group velocity dω/dk‖∝ωR of plasmons
on the nanowire.

Combining the results of Eqs. (32) and (33) into Eq. (28), one finds that the decay rate into plasmons in the
nanowire limit behaves like

Γpl ∝ Γ0
K1(κ1⊥d)

2

(k0R)3
, (34)

which agrees with the results derived previously. Again, the proportionality constant depends only on ǫ1,2. Physically,
the spontaneous emission rate into the plasmon modes increases like 1/R3 as R→0 due to the simultaneous reduction
in group velocity (vg∝R) of these modes and an increase in coupling strength (g2∝1/R2) due to the localization of
the field energy to a region whose size is proportional to the cross-sectional area of the wire.

C. Purcell factor of a nanowire

Comparing the spontaneous emission rates given by Eqs. (18), (22), and (26), we now qualitatively discuss the
behavior one should expect as the position of the emitter is varied. In the limit that d/R≫1 clearly the spontaneous



9

emission rate is dominated by radiative decay and is equal to the spontaneous emission rate Γ0 in a uniform dielectric.
As one brings the emitter closer to the wire surface, the change in the electromagnetic mode structure near the wire
results in some modified radiative decay rate Γrad which never exceeds approximately 4Γ0 for large |ǫ|. When the
emitter position d approaches d∼1/|k1⊥|∼R/|C−1|, the emitter starts to be able to decay into the localized plasmon
fields, with the rate scaling with wire size like 1/R3. The spontaneous emission rate into plasmons continues to grow as
the emitter is brought even closer to the wire edge, d→R. However, the efficiency or probability of plasmon excitation
eventually decreases due to the large non-radiative decay rate experienced by the dipole very near the wire, which
diverges like 1/(d−R)3. We thus expect some optimal efficiency of spontaneous emission into the plasmon modes to
occur when the emitter is positioned at a distance O(R) away from the wire edge, and for this optimal efficiency to
improve as R→0.

This result is illustrated in Fig. 3a, where we have numerically evaluated the spontaneous emission rates derived
previously. Specifically, we plot as a function of R the “error” probability PE = 1 − Γpl/(Γpl + Γ′) that a single,
excited quantum emitter fails to decay into the plasmon mode. Here, Γ′ = Γrad + Γnon-rad denotes the total emission
rate into channels other than the fundamental plasmon mode, and the error probability has been optimized over the
emitter position d. It can be seen that as R→0, the probability of emission into the plasmons approaches almost
unity. Examining this limit more carefully, the error in fact approaches a small factor PE∝Im ǫ/(Re ǫ)2, explicitly
indicating that the efficiency is limited by dissipative losses, as will be more carefully shown below. For the chosen
parameters the probability of emission into the plasmons is well over 99% as R→0, with a corresponding effective
Purcell factor Γpl/Γ

′ ≈ 5.2×102. Again, we emphasize that these properties are specifically a result of the conducting
properties of the nanowire. This can be contrasted with emission into the guided modes of a sub-wavelength optical
fiber, which drops exponentially as R→0 due to the weak confinement of these guided modes [32]. In Fig. 3b, we
plot log10 PE as functions of R and d/R. It can be seen that achieving a large Purcell factor does not depend too
sensitively on the emitter position d.

We now prove that the maximum efficiency as R→0 is indeed limited by a small factor related to the dissipative
losses of the metal. We consider the quantity

Γ′

Γpl
≈
(

1 +R2/d2
)2

+ αnon-rad(k0(d−R))−3

αpl(k0R)−3K1(κ1⊥d)2
, (35)

where αnon-rad ≈ (3/8ǫ
3/2
1 )Im ǫ/(Re ǫ)2 is a small parameter explicitly characterizing the losses in the metal. Defining

y≡(d − R)/R, and using κ1⊥≈C−1/R along with the asymptotic expression K1(x) ≈
√

π/2xe−x for large x, we can
re-write Γ′/Γpl as

Γ′

Γpl
≈2C−1

παpl
(1 + y)

[

(k0R)3
(

1 +
1

(1 + y)2

)2

+
αnon-rad

y3

]

e2C−1(1+y). (36)

Note that the first term in the brackets corresponds to radiative decay and vanishes in the limit that R→0, and
thus the ultimate limit to the efficiency of plasmon generation is due to a balance between the plasmon and non-
radiative decay rates. In this limit, a straightforward calculation yields a minimum in the expression above at
y0 = (1−C−1 +

√

1 + C−1(4 + C−1))/2C−1, which confirms that the optimum position of the emitter is on the order
of a few radii away from the wire edge, while the corresponding value of the minimum is proportional to αnon-rad.

IV. SPONTANEOUS EMISSION NEAR A NANOTIP

In Sections II and III we derived and discussed the physics of plasmon modes on a nanowire and spontaneous emission
of a nearby dipole emitter. For this simple geometry it was possible to find analytical solutions and understand
the relevant physics of emitter/plasmon coupling in conducting nano-structures. In particular, it was seen that
for such structures, the tight transverse confinement of the plasmon modes leads to a large effective Purcell factor
for an optimally positioned dipole emitter as the relevant size scale decreases, with the maximum enhancement
limited by non-radiative decay. At the same time, however, it is evident that the R→0 limit is accompanied by
enhanced losses as the plasmon propagates, due to the tighter confinement of fields in the metal, and a reduction
in the plasmon wavelength λpl that could make out-coupling more difficult. Such factors could clearly impose limits
for applications such as quantum information, but can be circumvented with simple design improvements. In this
section, we investigate one specific design, a metallic nanotip. As in the nanowire case, one expects a sub-wavelength
plasmon mode volume, determined here by the tip curvature, and an associated enhancement of emission into the
plasmon modes. At the same time, though, the tip can rapidly expand to larger sizes where the propagative losses
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of the plasmons are less severe, and where λpl is not as small. In the nanotip case we are not able to obtain full
electrodynamic solutions for the plasmon modes. However, in a manner similar to that described in Sec. III, we will
calculate all of the relevant decay rates in the quasistatic limit and describe an approximative method to calculate
the effects of propagative losses along the nanotip. We will also compare these results to those obtained via fully
electrodynamic numerical simulations, and we find that these two approaches agree closely.

In the following we will consider a nanotip whose surface can be parameterized as a paraboloid of revolution with
symmetry along the z-axis. Specifically, we suppose that the surface of the nanotip is described by

z =
1

2

(

x2 + y2

v2
0

− v2
0

)

, (37)

a paraboloid of revolution with apex at z = −v2
0/2 (the reason for the offset of the apex will become apparent below).

We now introduce a change of coordinates,

x = uv cosφ, (38)

y = uv sinφ, (39)

z =
1

2

(

u2 − v2
)

. (40)

While these coordinates may seem awkward (note, for example, that u, v have units of
√
length), they are convenient

for deriving expressions for the fields and spontaneous emission rates, which we will then express in more “natural”
coordinates at the end of the calculation. In these parabolic coordinates, the nanotip profile of Eq. (37) is defined by
a surface of constant v = v0. More generally, any constant v defines some paraboloid of revolution in this system,
while the unit vectors û and v̂ run normally and tangentially to these surfaces, respectively.

Now, as in the nanowire case, we are interested in seeking the quasistatic field solution for a point charge source in
the vicinity of the nanotip, from which we can obtain the field due to a dipole p0. In particular, we seek solutions of
the total field of the form (10) with appropriate boundary conditions. Like before, we separate the pseudopotential
Φ1 outside the nanotip into its free and reflected components Φ0,r, and use an integral representation of the free
pseudopotential suitable for parabolic coordinates,

Φ0(r, r
′) =

1

2πǫ0ǫ1

∞
∑

m=0

(2 − δm,0) cos m(φ− φ′)

∫ ∞

0

dq qJm(qu)Jm(qu′)Im(qv)Km(qv′). (v < v′) (41)

Because Φ0 fully accounts for the point source, Φr,2 then satisfy Laplace’s Equation. Using separation of vari-
ables, it is straightforward to show that the solutions to Laplace’s Equation are given in parabolic coordinates by
∼Jm(qu)Gi,m(qv)eimφ, where G1,m(qv) = Km(qv) and G2,m(qv) = Im(qv) are non-divergent functions in their regions
of applicability. We then define the following expansions,

Φr(r, r
′) =

1

2πǫ0ǫ1

∞
∑

m=0

(2 − δm,0) cos m(φ− φ′)

∫ ∞

0

dq qαm(q)Jm(qu′)Km(qv′)Jm(qu)Km(qv), (42)

Φ2(r, r
′) =

1

2πǫ0ǫ1

∞
∑

m=0

(2 − δm,0) cos m(φ− φ′)

∫ ∞

0

dq qβm(q)Jm(qu′)Km(qv′)Jm(qu)Im(qv), (43)

where the coefficients α, β will be determined by imposing boundary conditions at the nanotip surface v = v0. It can
be easily shown that the continuity of Φ and D⊥ imply that

αm(q) =
(ǫ1 − ǫ2)I

′
m(qv0)Im(qv0)

ǫ2I ′m(qv0)Km(qv0) − ǫ1Im(qv0)K ′
m(qv0)

, (44)

βm(q) =
−ǫ1 (Im(qv0)K

′
m(qv0) − I ′m(qv0)Km(qv0))

ǫ2I ′m(qv0)Km(qv0) − ǫ1Im(qv0)K ′
m(qv0)

. (45)

Note that the coefficients αm(q), along with Eq. (42), completely determine the reflected field.
The calculation of the radiative and non-radiative spontaneous emission rates proceeds in the same manner as the

nanowire case. To calculate Γrad, we again look for a dipole term in the far-field (large v) that corresponds to an
induced dipole moment δp in the nanotip, and then use the relationship Γrad∝|p0 + δp|2. At the same time, we look
for a divergent contribution to the reflected field at the dipole location as its position v′ approaches v0, which yields
the leading term of the non-radiative decay rate through Γnon-rad∝Im(p0 · Er(r

′, r′)). This divergence is physically
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due to the dissipation of divergent currents induced in the metal by the dipole. For a dipole positioned along the
z-axis (u′ = 0),

p0 ·Er(r
′, r′) = − p2

0

4πǫ0ǫ1

∫ ∞

0

dq
q3

v′2
α1(q)K

2
1 (qv′), (p0 ⊥ ẑ)

p0 ·Er(r
′, r′) = − p2

0

2πǫ0ǫ1

∫ ∞

0

dq
q3

v′2
α0(q)K

2
1 (qv′), (p0 ‖ ẑ) (46)

as shown more carefully in Appendix C. Mathematically, the divergence as v′→v0 occurs due to the presence of a
long tail ∼e−2q(v′−v0) in the integrand for large q. Because of the similarity of the decay rate calculations with those
in Sec. III, we simply state the results here, while providing more details in Appendix C. For a dipole positioned
along the z-axis at v = v′, the radiative and non-radiative spontaneous emission rates are given by

Γrad

Γ0
=

∣

∣

∣

∣

1 − v2
0

v′2

(

1 − ǫ2
ǫ1

)∣

∣

∣

∣

2

, (p0 ‖ ẑ)

Γrad

Γ0
=

∣

∣

∣

∣

1 +
ǫ1 − ǫ2
ǫ1 + ǫ2

v2
0

v′2

∣

∣

∣

∣

2

, (p0 ⊥ ẑ) (47)

and

Γnon-rad/Γ0 ≈ 3

16k3
0ǫ

3/2
1

1

v′3(v′ − v0)3
Im

(

ǫ2 − ǫ1
ǫ2 + ǫ1

)

, (p0 ⊥ ẑ)

Γnon-rad/Γ0 ≈ 3

8k3
0ǫ

3/2
1

1

v′3(v′ − v0)3
Im

(

ǫ2 − ǫ1
ǫ2 + ǫ1

)

. (p0 ‖ ẑ) (48)

Finally we consider the decay rate into the fundamental plasmon mode of the nanotip, which is associated with
the contribution of the poles in the integrand of Eq. (46) to Im (p0 ·Er(r

′, r′)). The presence of a pole indicates the
excitation of a natural mode of the system. Examining the solutions to α0,1 given in Eq. (44), one finds that α1

has no pole in the range 0 ≤ q ≤ ∞. Physically, the absence of a pole means that a dipole simultaneously oriented
perpendicular to ẑ and located along the z-axis does not excite the fundamental plasmon mode of the nanotip. This
is easily understood since a dipole oriented this way is anti-symmetric with respect to 180◦ rotations about ẑ, while
the plasmon mode is symmetric. On the other hand, α0 does have a pole corresponding to plasmon excitation. This
pole is located at q0 = C−1/v0, where C−1 is the solution to Eq. (5). Evaluating the contribution of this pole to the
field is straightforward and yields a plasmon decay rate

Γpl

Γ0
=

3π

k3
0ǫ

3/2
1

C3
−1

v4
0v

′2
K2

1(q0v
′)

(ǫ1 − ǫ2)I1(C−1)I0(C−1)

dχ(C−1)/dx
, (49)

where χ(x) is defined in Eq. (25). As in the nanowire case, the decay rate Γpl into the plasmon mode given by
Eqs. (49) and (25) is evaluated in the limit that Im ǫ2 = 0, such that q0 and C−1 are purely real.

Having derived the decay rates in parabolic coordinates, we now define a more natural set of parameters to describe
the system. Let us introduce a length scale w that characterizes the nanotip via ρ(z) =

√
wz (z ≥ 0), where ρ is the

radius of the nanotip at position z (note also the corresponding shift in the apex of the tip from z = −v2
0/2 to z = 0).

Furthermore, let z = −d < 0 be the position of the emitter (d is the distance between the emitter and end of the
nanotip). In terms of these parameters, the spontaneous emission rates derived above can be re-written as

Γrad

Γ0
=

∣

∣

∣

∣

1 + (1 + 4d/w)−1

(

ǫ2
ǫ1

− 1

)∣

∣

∣

∣

2

, (50)

Γnon-rad

Γ0
=

3

8ǫ
3/2
1

1

(k0d)3
Im

(

ǫ2 − ǫ1
ǫ2 + ǫ1

)

, (51)

Γpl

Γ0
= α̃pl

1

(k0w)3(1 + 4d/w)
K2

1(C−1

√

1 + 4d/w), (52)

where α̃pl only depends on ǫ1,2 and is given by

α̃pl =
24π

ǫ
3/2
1

C3
−1

(ǫ1 − ǫ2)I1(C−1)I0(C−1)

dχ(C−1)/dx
. (53)
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Having obtained the spontaneous emission rates near a nanotip into the different possible channels, it is once again
possible to optimize the efficiency of emission into the plasmon modes for given w by varying the emitter position d.
The corresponding optimized error probability, PE = 1 − Γpl/(Γpl + Γ′), is plotted as a function of w in Fig. 3a. In

analogy to the nanowire system, a large effective Purcell enhancement of Γpl/Γ
′≈2.5 × 103 arises as w→0, due to a

balance between the small mode volumes associated with the plasmons and the non-radiative decay rate. In Fig. 3c,
we plot log10 PE as functions of w and d/w. Once again, it can be seen that the error is not too sensitive to the
emitter position.

Because the plasmon modes here were obtained through a quasistatic approximation, this calculation yields no
information about dissipative losses as the plasmon propagates along the nanotip. For example, in this limit H≈0
so one cannot obtain the Poynting vector for the system. To estimate the effect of propagative losses, however, we
can make an eikonal approximation [40], assuming that the plasmons are emitted completely into the end of the
tip (z = 0), and that the propagative losses thereafter at any position z are described locally by the nanowire solution
at radius ρ(z). This motivates us to define an effective decay rate

Γ̃pl(R) = Γplexp

(

−2

∫ z(R)

0

Im k‖(ρ(z))dz

)

, (54)

which equals the rate of decay into the plasmons multiplied by the probability that an emitted plasmon will propagate
without dissipation to some final nanotip radius R. Here Γpl is the decay rate for the nanotip obtained earlier, while
k‖(ρ) is the plasmon wavevector for a nanowire of radius ρ. One can also define a corresponding effective error

probability P̃E(R) = 1 − Γ̃pl(R)/(Γpl + Γ′) for the nanotip. Physically, P̃E is the probability that the plasmon mode
is either not excited by the emitter, or is excited but fails to successfully propagate to final radius R. In Fig. 3a we
plot this quantity as a function of R, when optimized over possible tip parameters w and d. It can be seen that the
effective error probability for a nanotip compares favorably to that of a nanowire when k0R >∼ 0.05. In other words,
the nanotip configuration is able to simultaneously exhibit a strong Purcell effect and reduce propagative losses. We
note that the nanotip system also has the added benefit of generating guided plasmons along a single direction of
propagation.

Finally we discuss the limits of validity of the equations derived above for the nanotip. The quasistatic decay
rates are valid in the regime |ki|w, |ki|d≪1, which implies that propagative phases associated with the electrodynamic
solution can be ignored over the length scales of interest. At the same time, Eq. (54) assumes that the plasmon
mode at some tip radius ρ adiabatically follows the nanowire solution of corresponding radius. One can define
an adiabatic parameter β = d(1/Re k‖(ρ))/dz associated with the propagation, which must be small for such an
assumption to be valid. Physically, a small β corresponds to a small correction to the propagative phase due to the
variation of Re k‖(ρ(z)), compared to the ∼2π phase acquired over a distance of the plasmon wavelength. Assuming,

for example, that we are considering sufficiently small length scales that Re k‖≈|k‖|≈|C−1|/ρ(z)≈|C−1|/
√
wz, the

condition that β≪1 implies that the eikonal approximation is valid only in regions where z≫w/|C2
−1|. It can be

seen that zc≡w/|C2
−1| represents some cross-over value, below which Eq. (54) clearly is invalid. On the other hand,

|1/q20| = v2
0/|C2

−1|∼w/|C2
−1| sets the relevant length scale for the plasmons on the nanotip, and one expects dissipation

to occur on length scales much longer than this. Thus, as long as the losses predicted by Eq. (54) for z < zc remain
small, one can effectively use this equation for all z even if it is not strictly valid for z < zc. A straightforward
calculation confirms that the predicted loss, 1 − Γ̃pl(Rc)/Γpl∼1 − exp(−ImC−1/|C−1|), is indeed negligible, where
Rc≡R(zc). Finally, in practice, for the applications of interest we will be primarily interested in nanotip devices whose
radii do not grow indefinitely, but rather expand until they reach some final, constant radius R. Such devices, for
example, are more likely to be easily out-coupled, as discussed further in the next section. For Eq. (54) to remain valid
for such a system, the spontaneous emission rate into plasmons for this device must be close to the rate calculated
for an infinite, perfectly paraboloidal tip. This imposes the additional requirement that the final radius R be much
larger than Rc.

To check the analytical results derived above for the nanotip, we have also performed detailed numerical simula-
tions using boundary element method (BEM) [41]. Details of our implementation are given in Appendix D. BEM
simulations are fully electrodynamic solvers of Maxwell’s Equations, and they were used to obtain the classical elec-
tromagnetic field solutions of an oscillating dipole emitter p0e

−iωt near a nanotip. The results of a few sample
simulations are shown in Fig. 4, for a tip curvature parameter k0w = 0.022, final radius k0R = 0.3, and varying
emitter positions k0d = 0.002, 0.2, 0.7. In Fig. 4a, we plot the quantity |Re(E × H∗)|, which is proportional to the
Poynting vector and corresponds to the total energy flux of the system. The nanotip is assumed to be composed of
silver in a surrounding dielectric ǫ1 = 2, and its boundary is given by the dotted line, while the emitter positions are
denoted by the circles. The total spontaneous emission rate is given via Γtotal = (Γpl +Γ′)∝Im (p0 ·E1(r

′, r′)) and is
determined numerically for each configuration by finding the total field at the dipole location. On the other hand, the
effective emission rate Γ̃pl(R) into the plasmons is determined by a best fit of the fields in the region of constant R
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to the known plasmon solution on a nanowire given in Eq. (3), and then calculating the total power transport of this

best-fit mode through the integrated Poynting vector. This total power is directly proportional to Γ̃pl(R). The figure
confirms the qualitative behavior that we expect and have described previously. In particular, the generated plasmon
field and total spontaneous emission rate are largest for very small separations and decrease as the emitter is placed
further away from the end of the nanotip. In Fig. 4b, we plot |Re(E×H∗)|/Γtotal, which is proportional to the energy
flux normalized by the total power output of the emitter. This quantity yields information about the efficiency of
decay into the various channels. For small separations (k0d = 0.002), the plot is mostly dark, which indicates that the
decay of the dipole is predominantly non-radiative. For k0d = 0.2, the maximum (corresponding to bright spots in
the plot) is located along the entire surface of the nanotip, which indicates highly efficient plasmon excitation. Here,
although the total emission rate into plasmons decreases from the k0d = 0.002 case (as seen in Fig. 4a), the efficiency
increases dramatically due to less competition from non-radiative decay. Finally, for k0d = 0.7, the maximum appears
as the typical lobe pattern associated with radiative decay.

In Fig. 3a, we have plotted the numerically optimized values of P̃E(R) = 1 − Γ̃pl(R)/(Γpl + Γ′) for a few values

of R. It can be seen that the values of P̃E obtained through analytical approximations and numerical BEM closely
agree. Unlike the theoretical predictions, however, the numerically calculated error probability does not increase
monotonically with R. We believe that the origin of this is that for the numerically optimized parameters, the
condition R≫Rc under which the theoretical predictions hold is only weakly satisfied, and the excitation region for
the plasmons cannot strictly be thought of as a single point at the end of the tip (z = 0).

V. SINGLE PHOTON GENERATION VIA COUPLING TO DIELECTRIC WAVEGUIDE

We have shown in previous sections that a single emitter can spontaneously emit into the guided plasmon modes of
a nearby nano-structure with high probability. This prospect of efficient conversion between excitation of the emitter
and a single photon has a number of applications in the fields of quantum computing and quantum information. In this
section, we consider one particular application, involving the use of such a system as an efficient single-photon source.
The concepts behind single-photon generation on demand with an individual emitter in a cavity have been discussed
elsewhere [42, 43, 44] and will not be presented in detail here. We note also that the ideas behind single-photon
sources can be extended to create long-distance entanglement between emitters, as detailed, e.g., in [45].

Because of dissipative losses in metals, the plasmon modes are not directly suitable as carriers of information
over long distances. We show, however, that plasmonic devices can serve as an effective intermediate step, and in
particular can be efficiently out-coupled to the modes of a co-propagating dielectric waveguide. The single photon
device is illustrated schematically in Fig. 1. In Fig. 1a, an optically addressable emitter with multiple internal levels
sits in the vicinity of a conducting nanowire. The emitter is strongly coupled to the nanowire, such that single photons
on demand can be generated with high efficiency in the plasmon modes by external manipulation of the emitter. The
addressability of the emitter along with the internal levels allows for shaping of this single-photon pulse [46], as
illustrated in Fig. 1b. Here, a three-level emitter is shown with two ground or metastable states |s〉, |g〉, which both
have dipole-allowed transitions to the excited state |e〉. We assume that the system is prepared initially in the state
|s〉, and that the |e〉−|g〉 transition is coupled via the plasmon modes of the nanowire, i.e., the state |e〉 can decay at a
rate Γpl into |g〉 by emitting a photon into the plasmon modes. In addition, there is a small rate Γ′ at which the excited
state can decay without emitting a plasmon. A single photon in the plasmon modes of the nanowire is generated
with high probability by exciting the |s〉 − |e〉 transition with some external pulse Ω(t) and the subsequent decay into
|g〉, with the shape of the single photon wavepacket controlled by the shape of Ω(t). We further assume that the
plasmon is then evanescently coupled to a nearby dielectric waveguide, as shown in Fig. 1a, which co-propagates with
the nanowire over some distance Lex over which this coupling is non-negligible. The coupling is a reversible process,
and the distance Lex is optimized to maximize efficiency of ending up with a single photon in the waveguide (i.e.,
to prevent further Rabi oscillations back into the nanowire). A similar setup with a nanotip is illustrated in Fig. 1c.
Here the nanotip radius ρ(z) expands to some final radius R at which point coupling with the waveguide starts to
occur. Initiating the coupling once the nanotip has reached a constant radius allows the two systems to be easily
coupled, as discussed below. When optimized, we estimate that single-photon generation efficiencies exceeding ∼90%
are possible in this tiered configuration.

To treat the problem analytically, we consider the simple situation of our nano-structure coupled to a cylindrical
dielectric waveguide (e.g., an optical fiber) of radius Rg, such that the modes can be calculated analytically using the
methods described in Appendix A. It can be shown that the fundamental modes of the waveguide are degenerate
m = ±1 modes that are not cut off as Rg→0. The dependence of their wavevector k‖ on Rg is shown in Fig. 5,
for a core permittivity ǫg = 13 and surrounding permittivity ǫ1 = 2. These parameters correspond closely to that
of a Si/SiO2 guide at λ0 = 1 µm. To simplify the calculation, we also assume that coupling between the wire and
higher-order waveguide modes is negligible. This can be achieved, for example, by operating below the cutoff radius of
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higher-order modes or by operating with sufficiently large wavevector mismatch between the plasmon and higher-order
guide modes.

We make the ansatz that the total field of the system is given by a superposition of the unperturbed modes of the
nano-structure and waveguide. While this cannot strictly be correct, as such a solution violates boundary conditions
at each interface, we rely on such an assumption to give us the correct qualitative behavior without resorting to more
complex numerical calculations. Specifically, we assume that the total electric field for the system takes the form

ET (r) =
∑

µ=w,g

Nµ
∑

i=1

Cµ,i(z)Eµ,i(r), (55)

where µ indexes the nano-structure (w) and waveguide (g) systems, and i = 1, · · ·, Nµ runs over the modes of system µ.
In the following we will explicitly treat the nanotip case, where the plasmons propagate in a single direction, although
this argument can easily be extended to the nanowire. We emphasize that we are considering coupling of the plasmon
mode to the waveguide once the nanotip has already expanded to its final radius R, at which point the plasmon mode
solution becomes identical to that of a nanowire. In our case, Nw = 1 as we only consider the fundamental plasmon
mode of the nanotip, while Ng = 2 as we take into account the two degenerate, co-propagating fundamental modes
of the waveguide. Eµ,i(r) here represents the unperturbed solution of mode i in system µ (without the presence of
the other system). A similar expression holds for the total magnetic field.

With the ansatz of Eq. (55) for the total field of the combined waveguide and nanotip system, one can derive
exact equations of evolution [47] based on Lorentz reciprocity for the coefficients Cµ,i. Explicitly separating out the
plane-wave dependence of the unperturbed fields, Eµ,i(r) = Eµ,i(ρ)eik‖µ,iz, the Nw + Ng coupled-mode equations
take the form

∑

ν=w,g

Nν
∑

j=1

Pµ,i;ν,j(z)
dCν,j

dz
= iωǫ0

∑

ν=w,g

Nν
∑

j=1

Kµ,i;ν,j(z)Cν,j(z), (56)

as derived in detail in Appendix E. The coefficients to the system of equations above are given by

Pµ,i;ν,j(z) = ei(k‖ν,j−k‖
∗
µ,i)z

∫

dρ
(

Eν,j(ρ) × H∗
µ,i(ρ) + E∗

µ,i(ρ) × Hν,j(ρ)
)

· ẑ, (57)

Kµ,i;ν,j(z) = ei(k‖ν,j−k‖
∗
µ,i)z

∫

dρEν,j(ρ) · E∗
µ,i(ρ) (ǫT (ρ) − ǫν(ρ)) , (58)

where ǫT (ρ) is the electric permittivity of the combined system. Clearly, the presence of the phase factors

ei(k‖ν,j−k‖
∗
µ,i)z in the equations above indicate that, at least under weak coupling, significant power transfer be-

tween the two systems will not take place unless the two systems are approximately mode-matched with respect to k‖.
In practice, this implies that for a final tip radius R, there is some ideal waveguide size Rg that allows for maximum
transfer efficiency between the two systems. A similar optimization of the waveguide parameters exists in the case
of arbitrary coupling strength between the two systems, although this problem is more complex because one must
account for factors such as the phase shift of one system due to the other. We emphasize that the coupled-mode
equations above are exact within the ansatz of Eq. (55). For example, for two lossless systems these equations conserve
power, and for a lossy system (such as a nanotip) the effects of losses are treated exactly. By convention, the integrals
appearing in the diagonal matrix elements Pµ,i;µ,i are typically set to 1.

For the waveguide and nanotip systems coupled over a length Lex, the exact single-photon generation efficiency will
depend on the details of how the two systems are brought together and separated apart. In practice, for example,
the two systems should be brought together slowly enough that the introduction of the waveguide does not cause
significant back-scattering of the plasmon, yet quickly enough that this introduction length is small compared to
the plasmon decay length. Furthermore, in reality the coupling region will not be a step of length Lex but will be
characterized by some smooth transition. To avoid the many details associated with this introduction and separation
and to approximately calculate the efficiency, we will consider an idealized system and make three assumptions:

(i) The decay rates of the emitter are not affected by the presence of the nearby dielectric waveguide. In particular,
the Purcell factors and error probabilities calculated earlier for the nanotip are unchanged.

(ii) The radius of the nanotip is given by ρ(z) =
√
wz for z < z0 and becomes constant, R ≡ ρ(z0) =

√
wz0, for

z≥z0. For z≥z0 the plasmon mode solution becomes identical to the nanowire solution, and in particular has
well-defined k‖ which allows it to be easily mode-matched with the waveguide. It is assumed that coupling
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between the nanotip and waveguide begins at z = z0, with the initial field amplitudes of the coupled system
given by

Cw(z0) =
(

1 − P̃E(R)
)1/2

, (59)

Cg,i(z0) = 0, (60)

where the effective plasmon excitation probability 1− P̃E(R) is already optimized for a given R over the nanotip
curvature and emitter position.

(iii) Eq. (56) exactly describes the coupling between the two systems in the region z0≤z≤z0 + Lex. To estimate
the probability of transfer from nanowire to waveguide after distance Lex when the two systems are once again
separated, we project the total field of Eq. (55) at z = z0 + Lex into the waveguide mode. Specifically, the
projected field amplitude in the waveguide in either of the degenerate modes i is given by

Cproj,i(z0 + Lex) = 2

∫

dρ
(

ET (r) × H∗
g,i(r)

)

· ẑ, (61)

where the factor of 2 arises due to the normalization convention adopted here for the unperturbed modes,
Pg,i;g,i =

∫

dρ
(

Eg,i × H∗
g,i + E∗

g,i × Hg,i

)

= 1.

Because of the symmetry, the projected field strengths |Cproj,i|2 calculated above are equal for the two degenerate

waveguide modes, and the quantity 2|Cproj,i|2 then corresponds to the efficiency of single photon generation. Here the
additional factor of 2 accounts for the mode degeneracy. This quantity takes completely into account the propagative
losses of the plasmons, imperfect coupling between the nanotip and waveguide, and the Purcell factor of the nanotip.

In Fig. 6a we plot the efficiency of single photon generation as a function of R, for both the nanowire and nanotip
systems. For each R the plotted efficiencies have been optimized over all other possible parameters of the system.
For the nanowire configuration, we have assumed that the resulting forward- and backward-propagating waves in the
waveguide can be perfectly combined. In the figure we have also included points obtained by our BEM simulations of
a nanotip. Here, we have taken the numerically optimized values of P̃E and plugged them in as initial values for the
coupled-mode theory above. It can be seen that the numerical simulations agree well with our theoretical predictions.
We find that photon efficiencies of approximately 70% are possible for the nanowire, while efficiencies exceeding 95%
are possible for the nanotip. In Fig. 6b we plot the optimal coupling length Lex, in units of λpl, as a function of R for
the nanotip (Lex for the nanowire should be twice that of the nanotip, to account for the transfer of the forward- and
backward-propagating components of the emitted plasmon). It can be seen that the out-coupling to the waveguide
can in principle occur quite rapidly, over length scales of a few λpl.

The existence of an optimum R for photon generation can be intuitively understood. For smaller R the coupling
between the emitter and plasmon modes can be quite large. However, these tightly-confined plasmon modes are
accompanied by higher propagative losses and cannot be as efficiently coupled to the waveguide system. The coupling
efficiency between plasmons and waveguide modes improves for larger R. For the nanowire, however, the larger radius
results in weaker coupling between the plamson and emitter, while for the nanotip the accumulated propagative loss
increases as the final radius R grows.

VI. EFFECTS OF SURFACE ROUGHNESS

In previous sections we have treated the problem of plasmon propagation on smooth nanowires and nanotips,
taking into account inherent dissipative losses characterized by Im ǫ2. In practice, however, these structures are not
perfectly smooth, and the surface roughness can give rise to new scattering mechanisms for the plasmons. While
the general solution for the fields in the presence of arbitrary roughness is a complicated problem, we calculate the
effects in two limits. In Sec. VI A we calculate the losses on a nanowire due to radiative scattering in the limit of
small roughness and zero heating (Im ǫ2 = 0). Here the plasmons experience no inherent loss due to the metal but
can receive momentum kicks from the roughness that cause them to scatter radiatively. In Sec. VI B we calculate the
effects of small roughness for a nanowire in the non-retarded limit, where radiative effects are ignored but the effects
of increased dissipative losses are treated. While we explicitly treat only the nanowire case here, we note that the
results obtained can also be incorporated into our model for nanotip losses via Eq. (54).
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A. Radiative losses

For simplicity we consider a wire with axial symmetry, but with a surface profile given by ρ0(z) = R+ pζ(z), where
R is the average radius of the wire, ζ(z) is some random function describing the roughness, and p is an expansion
parameter that will be taken to equal 1 at the end. We will calculate in perturbation theory the radiated field scattered
from the roughness, from an initial field corresponding to the fundamental plasmon mode for a perfectly smooth wire.
Because of the symmetry, the only non-zero components of the fields remain Eρ, Ez, and Hφ, which will also have
axial symmetry. As will be seen later, it suffices for now to consider only Ez, as the other components depend on
Ez in a simple way through Maxwell’s Equations. We proceed by breaking up the total field along z in region i into
incident and scattered fields

Etotal
i,z = E0

i,z + Es
i,z , (62)

where E0
i,z is the z-component of the fundamental plasmon mode given by Eqs. (3) and (4), and further assume that

the scattered field can be expanded in a power series

Es
i,z =

∞
∑

n=1

pnE
(n)
i,z . (63)

In the following we will calculate the first-order scattered field E
(1)
i,z . We make the ansatz that E

(1)
i,z can be expanded

in the form [48]

E
(1)
1,z =

∫ ∞

−∞

dh‖H0(h1⊥ρ)
h2

1⊥

k2
1

A(h‖)e
ih‖z

E
(1)
2,z =

∫ ∞

−∞

dh‖ J0(h2⊥ρ)
h2

2⊥

k2
2

B(h‖)e
ih‖z, (64)

where each Fourier component is an outgoing solution of the wave equation with appropriate boundary conditions at
ρ = 0 and ρ = ∞, as derived in Eq. (A4). From Eq. (A4) one also sees that Eρ, Hφ are determined completely once

Ez is known. Using these relations, the total (incident plus scattered) fields Etotal and Htotal are straightforward but
lengthy to write down, and are given to order p in Eq. (F1) in Appendix F.

The coefficients A(h‖), B(h‖) are determined by enforcing continuity of the tangential fields at the boundary ρ0(z).
Specifically, we require that

(t̂ ·Etotal
1 )

∣

∣

ρ=R+pζ(z)
= (t̂ · Etotal

2 )
∣

∣

ρ=R+pζ(z)
, t̂ =

ẑ + pdζ
dz ρ̂

√

1 + p2
(

dζ
dz

)2

Htotal
φ,1

∣

∣

ρ=R+pζ(z)
= Htotal

φ,2

∣

∣

ρ=R+pζ(z)
, (65)

where t̂(z) is the unit tangent vector to the interface. These equations can be solved perturbatively by expanding
them in p and solving at each order. It should be noted that the expansion should be done carefully, as dependence
in p is contained not only in the fields given in Eq. (F1) but also in the surface profile ρ0(z) = R+ pζ(z) and tangent
vector t̂. The O(p0) equation is trivially satisfied by the fundamental plasmon mode for a smooth nanowire. To solve
to O(p), it is useful to first introduce the Fourier transform of the surface roughness,

ζ(z) =

∫ ∞

−∞

dh‖

2π
eih‖z ζ̃(h‖). (66)

Using the Fourier transform ζ̃(h‖), the O(p) equations become algebraic in Fourier space and have solutions (see
Appendix F)

A(h‖) =
ζ̃(h‖ − k‖)

2π

k2
1

h1⊥
f(h‖)

B(h‖) =
ζ̃(h‖ − k‖)

2π

k2
2

h2⊥
g(h‖), (67)



17

where k‖ denotes the unperturbed plasmon wavevector (in this section we take Im ǫ2 = 0 so that k‖ and C−1 are purely
real) . The scattering coefficients f(h‖), g(h‖) are complicated functions of h‖ and R and are given in Appendix F.
Physically, the equations above state that, to first order, the surface roughness contributes single momentum kicks to
the unperturbed plasmon fields with a strength determined by the Fourier components of the roughness. From this
point forward we set p = 1.

We now consider some random surface profile such that

〈ζ(z)〉 = 0

〈ζ(z)ζ(z′)〉 = δ2e−(z−z′)2/a2

, (68)

with corresponding correlations

〈ζ̃(k)〉 = 0

〈ζ̃(k)ζ̃∗(k′)〉 = 2π3/2δ2ae−
1

4
a2k2

δ(k − k′) (69)

for the Fourier components. Physically δ and a correspond respectively to the typical amplitude and length of a rough
patch on the surface of the wire. It is also useful to define s = δ/a as a typical “slope” to the roughness. To calculate
the power radiated due to the surface roughness we will find the ensemble-averaged Poynting vector far from the wire.
It is sufficient to consider just the component of 〈S〉 oriented along ρ̂, given outside the wire by

Sρ = −1

2
〈Etotal

1,z H∗ total
1,φ 〉, (70)

where the fields Etotal
1,z , Htotal

1,φ are given to first order by Eq. (F1). The calculation of Sρ simplifies further because the
incident plasmon field decays exponentially away from the wire, and thus to lowest order only the first-order scattered
fields will contribute to the Poynting vector at large ρ, which physically corresponds to the power radiated away to
infinity. Specifically, the radiated power per unit area is given by

Sρ = −1

2
〈E(1)

1,zH
(1)∗
1,φ 〉 (ρ→ ∞) (71)

=
1

2ωµ0

∫ ∞

−∞

dh‖dh
′
‖

ih1⊥
2h′∗1⊥
k2
1

H0(h1⊥ρ)H
′∗
0 (h′1⊥ρ)〈A(h‖)A

∗(h′‖)〉e
i(h‖−h′

‖)z. (72)

Substituting the solution for A(h‖) derived in Eq. (67) and using the correlations in Eq. (69), it is straightforward to
evaluate the integral over h′‖ and arrive at

Sρ =
iǫ0ǫ1ω

4
√
π
s2a3

∫ k1

−k1

dh‖e
− 1

4
a2(h‖−k‖)2h1⊥H0(h1⊥ρ)H

′∗
0 (h1⊥ρ)

∣

∣f(h‖)
∣

∣

2
. (73)

In the expression above we have truncated the bounds of the integral to ±k1 because we are interested in the Poynting
vector far away from the wire, where only radiative fields |h‖| ≤ k1 should contribute. With knowledge of the Poynting
vector it is then possible to find the dissipation rate of the plasmons due to radiative scattering, given by

Γrad,rough = lim
ρ→∞

2πρSρ

1
4

∫

dρ ǫ0
d

dω (ǫ(ρ, ω)ω) |E(ρ)|2 + µ0 |H(ρ)|2
. (74)

The denominator on the right-hand side of the equation above can be identified with the plasmon energy per unit
length.

We first qualitatively discuss the behavior of Γrad,rough before deriving various limits more quantitatively. From

Eq. (73) it is clear that Γrad,rough scales explicitly like δ2 or s2. Physically, this occurs because the lowest-order
contribution to the Poynting vector far away from the wire is due to the combination of a first-order scattered electric
field and first-order scattered magnetic field. In Fig. 7 the quantity Γrad,rough/s

2ω is evaluated numerically as a
function of wire radius R and correlation length a/R, for a silver nanowire at λ0 = 1µm and ǫ1 = 2. We are
particularly interested in the nanowire limit, when the plasmon wavevector k‖≈C−1/R. We see that for fixed R,
the scattering reaches a peak for some particular value of a/R. More careful inspection reveals that the maximum
occurs when a∝R/C−1 ∝ λpl. This result makes intuitive sense, since the characteristic momentum kick ∼1/a that
the plasmon wavevector k‖ receives due to roughness must be on the order of C−1/R in order for the resulting
wavevector to lie in the radiative range between −k1 and k1. In the limit a/R≫C−1, one observes an exponential
suppression of scattering, due to the fact that the roughness has a very narrow momentum distribution and cannot
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possibly contribute a large kick to k‖. In fact, in this regime one physically expects for the plasmon wavevector to
adiabatically vary with the changing wire radius. In the other limit a/R≪C−1, the scattering also decreases, but
with a polynomial dependence on R, as will be proven below. Here, the momentum distribution of the roughness
becomes very wide, and thus the probability of receiving a kick that results in a final momentum between ±k1 becomes
quite small. Finally, for fixed slope s, it can be seen that the scattering decreases as R→0 at any correlation length
a. This result is also easily understood, as the plasmon wavevector k‖ becomes increasingly far-removed from the
range of radiative wavevectors. In Table I, we calculate the scattering rates for wire sizes k0R = 0.1, 0.2, 0.3 (or
R≈16, 32, 48 nm), for a few chosen roughness parameters. The scattering rates are given as a percentage increase in
Im k‖ over the values for a smooth nanowire. It can be seen that strong suppression of radiative scattering occurs
both for smaller R and when a is either much larger or much smaller than R, which confirms our earlier observations.
Furthermore, it is evident that under reasonable parameters, the losses in the system are increased only slightly due
to radiative scattering, around an amount of 10% or less.

We now analyze more carefully the behavior of the radiative scattering in the nanowire regime. For concreteness,
we will consider a field normalized by Eq. (29), in which case the denominator of Eq. (74) becomes h̄ω/4L. To simplify
the expression further, we first note that since we are interested in the far field (ρ→ ∞), we can take the asymptotic
limits of the Hankel functions in Eq. (73), H0(h1⊥ρ)H

′∗
0 (h1⊥ρ)≈ − 2i/(πh1⊥ρ). One can also derive an asymptotic

relationship of f(h‖) as R→0 (see Appendix F), which upon substitution yields

Γrad,rough ≈ π3/2 |φ|2
Ṽ

ωǫ1s
2a3

∫ k1

−k1

dh‖ h
2
1⊥e

−(1/4)a2(k‖−h‖)2 , (R→0) (75)

φ ≡ H ′
0 (iC−1)

J ′
0 (iC−1)

J ′′
0 (iC−1) −H ′′

0 (iC−1). (76)

From the equation above, it is clear that there are three distinct regimes of interest defined by the quantity
α≡k‖a = 2πa/λpl≈C−1a/R, which characterizes the typical extent of a rough patch compared to the plasmon
wavelength. In the limit α≪1, one can approximate the exponential in the integrand of Eq. (75) as a constant,
which leads to straightforward evaluation of the integral,

Γrad,rough≈
4

3
π3/2 |φ|2

Ṽ
ωǫ

5/2
1 s2

(

k0R

C−1

)3

α3. (α≪1) (77)

Here, the noise spectrum of Eq. (69) becomes very wide and leads to an α3 scaling of the dissipation rate. In the
opposite limit α≫1, the value of the exponential term becomes exponentially small, with a corresponding exponential
suppression of the scattering rate. A more careful evaluation of the integrand yields

Γrad,rough≈8π3/2 |φ|2
Ṽ

ωǫ
3/2
1 s2

k0R

C−1α
e−(1/4)a2(k‖−k1)

2

. (α≫1) (78)

Finally, one can show that for fixed, sub-wavelength R the radiative scattering is most significant when α∼O(1).
In this case, the exponential appearing in Eq. (75) is neither exponentially small nor constant. However, one can

make the rough approximation e−(1/4)a2(k‖−h‖)2≈1 − (1/4)a2(k‖ − h‖)
2 to get an idea of the scaling in this regime.

It is straightforward to show that the scattering rate has a maximum with respect to α at α≈(12/5)1/2, with a
corresponding maximum decay rate

max
a

{

Γrad,rough

}

∝|φ|2
Ṽ

ωǫ
5/2
1 s2

(

k0R

C−1

)3

. (79)

Again, the radiative scattering is most significant when the length scale a of the roughness is on the order of the
plasmon wavelength, and the maximum scattering (for fixed s) decreases as R→0 due to the increasing mismatch
between k‖ and radiative wavevectors.

We now consider the limits of validity of the derivations above, specifically considering the expansions made in
Eq. (F2) that are necessary for the perturbative method used here. The first of these expansions requires that
|dζ/dz|≪1, which can be re-written as a condition on the slope, s≪1. Physically this requirement states that the
typical length of a rough patch be much larger than its typical height. The second line of Eq. (F2) requires that
|ki⊥ζ|≪1. In the nanowire regime this requirement is equivalent to δ≪λpl, which states that the height of a rough
patch must be much smaller than the plasmon wavelength. Finally, the third line of Eq. (F2) requires |hi⊥ζ|≪1, within
the range of hi⊥ that are appreciably scattered into. From Eqs. (67) and (69), we see that the relevant range for the

parallel component of the wavevector is given by k‖ − 1/a
<∼ h‖

<∼ k‖ + 1/a, and thus the largest relevant transverse
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wavevector is |hi⊥,max|∼max−1≤θ≤1

∣

∣

√

ǫi(ω/c)2 − (k‖ + θ/a)2
∣

∣. In the nanowire regime, k‖≈C−1/R, there are two
limiting cases. The first is when the correlation length a is much larger than R, a≫R, in which case |hi⊥,max|∼C−1/R
and |hi⊥ζ|≪1 reduces to δ≪λpl. In the other limiting case, R≫a, one finds that |hi⊥,max|∼1/a and the corresponding
requirement is given by s≪ 1.

We finally note that while the radiative scattering goes like δ2 or s2, the relevant quantity for dissipative (heating)
losses due to roughness becomes S inside the wire. For this quantity the lowest-order correction to the smooth wire
solution will come from a combination of a first-order and zeroth-order field. Thus one expects roughness-induced
dissipative losses to contribute a decay term proportional to δ or s, which for small roughness will dominate over
radiative scattering. This correction will be treated in the next subsection.

B. Non-radiative losses

To study the effects of surface roughness on non-radiative losses, we will make one simplifying assumption and
calculate these losses in the quasi-static limit. To do this we will proceed in a manner similar to that in Sec. III A,
where we found the quasi-static fields associated with a smooth nanowire. Here the calculations for the fields yielded
the presence of poles whose positions and widths give the real and imaginary parts of the wavevector k‖. The case
of a smooth nanowire was particularly easy to treat because of the translational symmetry of the system. A system
containing surface roughness lacks such translational symmetry and therefore must be considered more carefully,
but the calculation proceeds in much the same way. In particular, we will find expressions for the pseudopotentials
Φ1 = Φ0+Φr and Φ2 that satisfy the necessary boundary conditions in the presence of surface roughness. We can once
again find the positions and widths of the poles associated with the system, which are now altered by the roughness.

We first write down appropriate expansions for Φ0,r,2(r, r
′). The expansion for the incident component Φ0, given

originally in Eq. (11), is slightly re-written here,

Φ0(r, r
′) =

1

4πǫ0ǫ1

1

|r − r′|

=
1

2π2ǫ0ǫ1

∞
∑

m=0

(2 − δm,0) cos (m(φ− φ′))

∫ ∞

0

dh cos (h(z − z′))Km(hρ′)Im(hρ) (ρ < ρ′)

=
1

4π2ǫ0ǫ1

∞
∑

m=−∞

eim(φ−φ′)

∫ ∞

−∞

dh eih(z−z′)K̃m(hρ′)Ĩm(hρ) (ρ < ρ′). (80)

The functions K̃m(x), Ĩm(x) are defined by

K̃m, Ĩm(x) = Km, Im(|x|). (81)

We also break up Φr,2 into Fourier components that satisfy Laplace’s equation, and assume that these expressions
hold up to the interface:

Φr(r, r
′) =

1

4π2ǫ0ǫ1

∞
∑

m=−∞

eim(φ−φ′)

∫ ∞

−∞

dh eih(z−z′)K̃m(hρ)αm(h), (82)

Φ2(r, r
′) =

1

4π2ǫ0ǫ1

∞
∑

m=−∞

eim(φ−φ′)

∫ ∞

−∞

dh eih(z−z′)Ĩm(hρ)βm(h). (83)

To describe the surface roughness, we assume an interface with axial symmetry as before, ρ0(z) = R + pζ(z), where
the roughness profile ζ satisfies the correlations given in Eqs. (68) and (69). The coefficients αm, βm are determined
by the boundary conditions, namely that Φ and D⊥ must be continuous at the interface:

Φ1(r, r
′)
∣

∣

ρ=R+pζ(z)
= Φ2(r, r

′)
∣

∣

ρ=R+pζ(z)
,

ǫ1n̂ · ∇Φ1(r, r
′)
∣

∣

ρ=R+pζ(z)
= ǫ2n̂ · ∇Φ2(r, r

′)
∣

∣

ρ=R+pζ(z)
, n̂ =

ρ̂− pdζ
dz ẑ

√

1 + p2
(

dζ
dz

)2
. (84)

Plugging in the expressions for Φi given by Eqs. (80), (82), and (83), one can expand both boundary condition
equations to O(p2). Then, replacing ζ(z) in these equations with its Fourier transform given in Eq. (66), one obtains
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a set of coupled equations for αm, βm(h) completely in Fourier space, which, unlike the case of a smooth nanowire,
is not de-coupled in h. It is tedious but straightforward to show that, to O(p2), this set of equations is given by the
matrix integral equation

M0(h)

(

αm(h)
βm(h)

)

+ p

∫

dq

2π
ζ̃(h− q)M1(h, q)

(

αm(q)
βm(q)

)

+p2

∫

dq dq′

(2π)2
ζ̃(h− q − q′)ζ̃(q′)M2(h, q, q

′)

(

αm(q)
βm(q)

)

+ O(p3) =

v0(h) + p

∫

dq

2π
ζ̃(h− q)v1(h, q) + p2

∫

dq dq′

(2π)2
ζ̃(h− q − q′)ζ̃(q′)v2(h, q, q

′) + O(p3). (85)

The matrices Mi and vectors vi are complicated expressions and are given in Appendix G. We note, however, that

in the case of no surface roughness (ζ̃ = 0), the solution to the resulting equation M0(h) · (αm(h) βm(h))T = v0(h)
reduces to that of a smooth nanowire.

We now discuss how to solve Eq. (85) in the presence of surface roughness, using the methods detailed in [49]. One
might first consider expanding αm, βm in a power series of p, in a manner similar to the field expansion in Eq. (63)
for the case of radiative scattering, and then solving the O(pn+1) equations based on the O(pn) solutions. However,
one expects that such a perturbative solution would simply yield poles for each higher-order correction with the same

location as that of the unperturbed solutions α
(0)
m , β

(0)
m . Mathematically, this occurs because each calculation of the

next correction involves an inversion M−1
0 (h). On the other hand, physically we expect for the surface roughness

to result in some shift of the pole that is not predicted by such a perturbative method [49]. We thus consider an
alternate approach, in which we symbolically sum the perturbation series in Eq. (85) to all orders and then only keep
the lowest order result in p. Let us symbolically write Eq. (85) in the form

(M0 + δM)x = f0 + δf , (86)

where M0 and f0 are non-random matrices and vectors, respectively, δM is a random 2× 2 matrix integral operator,
δf is a random vector, and x is a column vector with components αm, βm. We now define the averaging operator

Px = 〈x〉, (87)

and the operator Q = 1 − P . We can apply P,Q to Eq. (86) to get

PM0x + PδMx = P (f0 + δf), (88)

QM0x +QδMx = Q(f0 + δf), (89)

which after some manipulation results in the set of equations

(M0 + PδM) 〈x〉 + PδMQx = P (f0 + δf), (90)

Qx = (1 + M−1
0 QδM)−1M−1

0 Q(f0 + δf) − (1 + M−1
0 QδM)−1M−1

0 QδM〈x〉. (91)

One can then substitute Eq. (91) into Eq. (90) and solve for 〈x〉, in which case one obtains
(

M0 + 〈(1 + δMM−1
0 Q)−1δM〉

)

〈x〉 = 〈(1 + δMM−1
0 Q)−1(f0 + δf)〉. (92)

We note that, unlike a perturbative expansion and solution for αm, βm, the equation above is thus far exact. Now,
we assume that δM and δf can be expanded in powers of p in the form

δM = pδM1 + p2δM2 + · · · ,
δf = pδf1 + p2δf2 + · · · . (93)

Comparing Eqs. (85) and (93), we see that 〈δM1〉 = 〈δf1〉 = 0 since 〈ζ̃〉 = 0. With this result, and utilizing the
definition Q = 1 − P , one can proceed to expand Eq. (92) up to O(p2), which yields (after setting p = 1)

(

M0 + 〈δM2〉 − 〈δM1M−1
0 δM1〉

)

〈x〉 = 〈f0〉 + 〈δf2〉 − 〈δM1M−1
0 δf1〉. (94)

Substituting the corresponding terms of Eq. (85) into the equation above and using the second-order correlations
given by Eq. (69), we find after simplifying that

[

M0(h) +
s2a3

2
√
π

∫

dq
(

e−a2q2/4M2(h, h, q) − e−a2(h−q)2/4M1(h, q)M
−1
0 (q)M1(q, h)

)

]〈

αm(h)
βm(h)

〉

=

[

v0(h) +
s2a3

2
√
π

∫

dq
(

e−a2q2/4v2(h, h, q) − e−a2(h−q)2/4M1(h, q)M
−1
0 (q)v1(q, h)

)

]

, (95)
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where s = δ/a.
We now discuss the solution to α0(h), which contains a pole corresponding to the fundamental plasmon mode

m = 0. When ǫ2 is a negative real number, α0 has a pole on the real h-axis whose position gives the new, shifted
plasmon wavevector k̃‖. When ǫ2 has a non-zero imaginary component, α0 will have a resonance feature along this

axis whose peak corresponds Re k̃‖ and whose width corresponds to Im k̃‖. A quick inspection of the equation above

reveals that k̃‖R = C̃−1(ǫi, s, a/R) is a constant that depends only on the quantities ǫi,s, and a/R. Unfortunately,

because of the complexity of Eq. (95) it is difficult to derive other scaling results for k̃‖ even in limiting cases. However,
Eq. (95) can be solved numerically. In practice, for known parameters, the matrices M and vectors v can be readily
evaluated over some range of h, from which the solutions to the system α0, β0(h) in that range immediately follow.
The resulting resonance in Imα0(h) as a function of h is then fitted to a Lorentzian, with its peak giving the shifted

wavevector Re k̃‖ and its half-width giving Im k̃‖. In Table II, we give the resulting losses and wavevector shifts for
a few roughness parameters, as calculated through Eq. (95). Again the numbers that we have used are for a silver

nanowire at λ0 = 1µm and ǫ1 = 2. The shifts in Re k̃‖ (or equivalently, Re C̃−1) and increases in the loss parameter

Im k̃‖/Re k̃‖ (or Im C̃−1/Re C̃−1) are given in terms of the percentage increase over their values for a smooth nanowire.
Again it can be seen that for reasonable parameters, surface roughness adds only a moderate amount of loss to the
system.

VII. CONCLUSIONS AND OUTLOOK

We have demonstrated that the subwavelength confinement of guided plasmon modes on conducting nano-structures
leads to strong coupling between these modes and nearby emitters in the optical domain. This strong coupling leads
to large effective Purcell factors for emission into the plasmon modes, which are limited only by heating losses in the
conductor. While losses prevent the plasmon modes from being useful photonic carriers of information, we have shown
that they can be efficiently out-coupled, e.g., to a dielectric waveguide. We estimate that single photon generation
efficiencies exceeding 95% are possible in such a tiered system. Finally we have analyzed the effects of plasmon
scattering due to moderate surface roughness on these nano-structures.

Rapid advances in recent years in fabrication techniques for nanowires [50, 51], nanotips [52], and sub-wavelength
dielectric waveguides [53, 54] puts such a system in experimental reach. Quantum dots or single color centers might
serve as physical realizations of solid-state emitters, which could be used to achieve strong-coupling cavity QED and
quantum information devices on a chip at optical frequencies. It is also interesting to consider real, individual atoms
interacting with nanowires and the challenges associated with constructing nanoscale traps. These traps might in
part be formed by the plasmon fields themselves.

We emphasize that the physical mechanisms that lead to strong coupling are not restricted to the nano-structures
considered here but can be quite a general feature of the plasmon modes associated with sub-wavelength conducting
devices. It is thus likely that the efficiencies calculated here are not fundamentally limited but can be further improved
by proper design. Photonic crystal-like structures for plasmons [55], for example, may be a promising approach to
achieve tight confinement while simultaneously reducing losses. Similar schemes may also help to improve coupling
between the plasmons and dielectric waveguide modes. Such approaches are likely to improve the performance of
plasmon cavity QED even further.

The authors thank Atac Imamoglu for useful discussions. This work was supported by the ARO-MURI, ARDA,
NSF, the Sloan and Packard Foundations, and by the Danish Natural Science Research Council.

APPENDIX A: GENERAL THEORY OF ELECTROMAGNETIC MODES OF A CYLINDER

The solution to the electromagnetic modes of a cylinder has been known for quite some time [25, 26] and is briefly
derived here.

We consider a cylinder of radius R of dimensionless electric permittivity ǫ2, centered along the z-axis and surrounded
by a second dielectric medium ǫ1. For non-magnetic media the electric and magnetic fields in frequency space satisfy
the wave equation

∇2

{

E(r)
H(r)

}

+
ω2

c2
ǫ(r)

{

E(r)
H(r)

}

= 0. (A1)

The solutions to Eq. (A1) are perhaps most easily derived by first finding scalar solutions of the equation and
then constructing vector solutions. Working in cylindrical coordinates, scalar solutions of Eq. (A1) satisfying the
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necessary boundary conditions take the form ψ1∝Hm (k1⊥ρ) e
imφ+ik‖z and ψ2∝Jm (k2⊥ρ) e

imφ+ik‖z outside and inside
the cylinder, respectively. Here Jm and Hm are Bessel functions and Hankel functions of the first kind, respectively,

while ki⊥ =
√

k2
i − k2

‖ and ki = ω
√
ǫi/c. Jm is well-behaved at ρ = 0, while Hm(x)∼eix for large x satisfies outgoing-

wave conditions. It is easy to verify that two independent vector solutions to Eq. (A1) are given by vi = 1
ki
∇× (ẑψi)

and wi = 1
ki
∇× vi. The curl relations of Maxwell’s Equations then imply that E and H must take the form

Ei(r) = aivi(r) + biwi(r), (A2)

Hi(r) = − i

ωµ0
ki (aiwi(r) + bivi(r)) , (A3)

where ai, bi are constant coefficients. Expanding out these expressions in detail,

Ei(r) =

[(

im

kiρ
aiFi,m(ki⊥ρ) +

ik‖ki⊥

k2
i

biF
′
i,m(ki⊥ρ)

)

ρ̂+

(

−ki⊥

ki
aiF

′
i,m(ki⊥ρ) −

mk‖

k2
i ρ
biFi,m(ki⊥ρ)

)

φ̂

+
k2

i⊥

k2
i

biFi,m(ki⊥ρ)ẑ

]

eimφ+ik‖z,

Hi(r) = − i

ωµ0
ki

[(

ik‖ki⊥

k2
i

aiF
′
i,m(ki⊥ρ) +

im

kiρ
biFi,m(ki⊥ρ)

)

ρ̂−
(

mk‖
k2

i ρ
aiFi,m(ki⊥ρ) +

ki⊥

ki
biF

′
i,m(ki⊥ρ)

)

φ̂

+
k2

i⊥

k2
i

aiFi,m(ki⊥ρ)ẑ

]

eimφ+ik‖z, (A4)

where F1,m(x) = Hm(x) and F2,m(x) = Jm(x).
Up to this point ai, bi are arbitrary coefficients, whose relationship becomes fixed by imposing boundary conditions

between the cylinder and surrounding dielectric. Requiring that the tangential components Eφ, Ez , Hφ, Hz of the
fields be continuous at the boundary results in a linear system of four equations, which we write in abbreviated
matrix form as M(a1 a2 b1 b2)

T = 0 [56]. A non-trivial solution for the fields requires that detM = 0, which after
some work simplifies to the mode equation given in Eq. (1).

One special case of interest is that of a TM mode with no winding (m = 0). The component of H along ẑ by
definition vanishes, which implies that the coefficients ai in Eq. (A4) vanish. The condition detM = 0 is then
significantly easier to evaluate in this situation. In particular, ai = 0 implies that the field components Eφ and Hz

vanish, and continuity of the remaining tangential field components Ez and Hφ at the boundary requires that

(

k2

1⊥

k2

1

H0(k1⊥R) −k2

2⊥

k2

2

J0(k2⊥R)
i

ωµ0

k1⊥H
′
0(k1⊥R) − i

ωµ0

k2⊥J
′
0(k2⊥R)

)

(

b1
b2

)

=

(

0
0

)

. (A5)

Setting the determinant of the above matrix equal to zero immediately yields the mode equation of Eq. (2), and it is
also immediately seen that the ratio of the coefficients b1,2 must be given by Eq. (4).

APPENDIX B: DERIVATION OF CUTOFF FOR HIGHER-ORDER MODES

In this section we show that to a very good approximation, a nanowire essentially supports a single, fundamental
m = 0 plasmon mode. In particular, for all higher-order plasmon modes |m|≥2 a cutoff wire size Rcutoff exists below
which such modes cannot exist, while the |m| = 1 plasmon modes exhibit an exponential growth in their mode volumes
as R→0. For simplicity, we will assume in this section that we are dealing with a lossless system (Im ǫ2 = 0).

1. Behavior of |m|≥2 modes

We are interested here in the behavior of the |m|≥2 modes near cutoff, which is characterized by a small deviation of
the plasmon wavevector k‖ from

√
ǫ1ω/c (see Fig. 2). To simplify algebra in the derivation of Rcutoff, from this point

forward we make the mode equation (1) dimensionless by setting ω/c = 1, and we will assume that m is positive (the
case where m is negative follows this derivation with a few minor modifications). Furthermore, it is useful to define a
small quantity δ = k‖ −

√
ǫ1, where we specifically consider the positive k‖ solution. On physical grounds, any mode

with positive k‖ must satisfy δ≥0, because if k‖ <
√
ǫ1 the fields outside of the wire would be radiative in nature and

implies that the system is continually radiating energy out to infinity without a source. It follows that any value of R
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where δ = 0 becomes a solution to Eq. (1) for some m then corresponds to a critical point in behavior, and specifically
is a cutoff beyond which modes cease to exist for that given m. To find this R = Rcutoff, it is useful to expand the
two sides of Eq. (1) in δ. We will find that both sides have contributions to these expansions that are divergent at
δ = 0 (terms that behave like δ−n, where n > 0), and we will show that, for m≥2, there exists one value of R that
equates these two divergent contributions; i.e., δ = 0 satisfies the mode equation at this particular value R = Rcutoff.

It is straightforward to show that the divergent contribution to the expansion of the left-hand side of Eq. (1) is
given by

LHS =
m2

4R2δ2
− m2(3ǫ1 + ǫ2)

4R2
√
ǫ1(ǫ1 − ǫ2)δ

+ O(δ0). (B1)

To expand the right-hand side, we first note that the quantity (1/k2⊥)J ′
m(k2⊥R)/Jm(k2⊥R) =

(1/
√
ǫ2 − ǫ1)J̃m(

√
ǫ2 − ǫ1R) +O(δ1) is well-behaved near δ = 0. Here we have defined J̃m(x) = J ′

m(x)/Jm(x). Then,
using the identity

Hm(ix) =
2

πim+1
Km(x), (B2)

where Km(x) is a modified Bessel function of the second kind, and the expansions

Km(x) =
(m− 1)!

2

(

2

x

)m

− (m− 2)!

2

(

2

x

)m−2

+O(x4−m) (m≥2), (B3)

k1⊥ = i

(

√

2δ
√
ǫ1 +

δ3/2

23/2ǫ
1/4
1

+ O(δ5/2)

)

(B4)

≡ iκ1⊥, (B5)

it is tedious but straightforward to expand the expression (1/k1⊥)(H ′
m(k1⊥R)/Hm(k1⊥R)) as well. Performing these

expansions and simplifying, one finds that

RHS =
m2

4R2δ2
− m2

4R2
√
ǫ1δ

+
m
√
ǫ1

2(m− 1)δ
+
im(ǫ1 + ǫ2)J̃m(

√
ǫ2 − ǫ1R)

2R
√

ǫ1(ǫ1 − ǫ2)δ
+ O(δ0). (B6)

Comparing Eqs. (B1) and (B6), we see that δ = 0 is a solution provided that these terms are equal to O(δ−1), i.e.,

m

R

ǫ1 + ǫ2
ǫ2 − ǫ1

=
Rǫ1
m− 1

+
i(ǫ1 + ǫ2)J̃m(

√
ǫ2 − ǫ1R)√

ǫ1 − ǫ2
. (B7)

The solution R = Rcutoff to Eq. (B7) gives the cutoff wire size below which the mode m cannot exist. In the regime
of interest (ǫ1 > 0,ǫ2 < 0,ǫ1 + ǫ2 < 0), the first and second terms are positive while the third term is a negative
function (for R > 0) that behaves like −1/R for small R and approaches a constant for large R. It can be seen then
that a solution exists for any m≥2, which establishes that these modes are indeed cut off in the nanowire limit.

2. Behavior of |m| = 1 mode

For simplicity we will assume that m = 1, as the case of m = −1 follows this derivation closely. The case of m = 1
must be studied separately because the expansion of Km(x) given in Eq. (B3) only holds for m≥2. The different
asymptotic scaling of K1(x) leads to unique behavior of the m = 1 mode in the nanowire limit. In particular we will
show that this mode does not strictly have a cutoff size, but that k‖ → √

ǫ1 exponentially in the limit R→0. In turn,
the magnitude of k1⊥ becomes exponentially small, which corresponds to an exponential growth in the spatial extent
or mode volume.

Again defining δ = k‖ −
√
ǫ1, we are interested in finding an approximate solution to Eq. (1) in the limit of small

δ. We proceed by expanding both sides of the equation as a series in the small parameter. The expression for the
left-hand side given by Eq. (B1) remains valid for m = 1. For the right-hand side, we anticipate that both the
quantities k1⊥R and k1⊥ will be small as R→0 (these assumptions can be checked for consistency at the end of the
calculation), and we thus expand around k1⊥R = 0 the term

1

k1⊥

H ′
1(k1⊥R)

H1(k1⊥R)
=

1

iκ1⊥

H ′
1(iκ1⊥R)

H1(iκ1⊥R)
(B8)

=
1

iκ1⊥

(

i

κ1⊥R
− i

(

γ + log
κ1⊥R

2

)

κ1⊥R +O(κ2
1⊥R

2)

)

, (B9)
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where γ≈0.577 is Euler’s constant. Here we have used Eq. (B2) to convert Hm(ix) to Km(x) and the expansion

K1(x) =
1

x
+

(

γ

2
− log 2

2
− 1

4
+

log x

2

)

x+O(x3). (B10)

We now assume that κ1⊥R is small enough that γ≪| log κ1⊥R|, such that

1

k1⊥

H ′
1(k1⊥R)

H1(k1⊥R)
≈ 1

iκ1⊥

(

i

κ1⊥R
− iκ1⊥R log

κ1⊥R

2

)

. (B11)

Furthermore, having assumed that k1⊥ (and by extension, κ1⊥) is a small quantity, we can now expand the expression
above in terms of δ using Eqs. (B4) and (B5). Making this substitution, and after a bit of algebra, one finds that the
expansion of the right-hand side of Eq. (1) is given by

RHS≈ 1

4R2δ2
+
ǫ1 + 3ǫ2 − 2R2ǫ1 (ǫ1 − ǫ2) log

(

δR2√ǫ1/2
)

4R2
√
ǫ1 (ǫ1 − ǫ2) δ

. (B12)

Finally, equating the left- and right-hand sides to O(δ−1) gives the solution

δ≈ 2

R2√ǫ1
exp

(

− 2 (ǫ1 + ǫ2)

R2ǫ1 (ǫ2 − ǫ1)

)

. (B13)

It follows that in the nanowire limit,

κ1⊥ =
(

k2
‖ − ǫ1

)1/2

(B14)

≈ (2δ
√
ǫ1)

1/2
(B15)

≈ 2

R
exp

(

− ǫ1 + ǫ2
R2ǫ1 (ǫ2 − ǫ1)

)

. (B16)

Eqs. (B13) and (B16) indicate that the m = 1 plasmon mode does not have a cutoff in the nanowire limit, but
instead that its longitudinal wavevector approaches

√
ǫ1 exponentially, with a corresponding exponential increase in

its transverse extent (∼1/κ1⊥) and mode volume. It is therefore well-justified to say that this mode is effectively cut
off, as the coupling strength to this mode becomes strongly suppressed as R→0.

APPENDIX C: RADIATIVE AND NON-RADIATIVE DECAY RATES NEAR A NANOTIP

Here we derive more carefully the expressions given in Eqs. (47) and (48) for the radiative and non-radiative
spontaneous emission rates near a nanotip.

To calculate the radiative rate, we should consider our expression for Φr in Eq. (42) in the far-field (large v) limit,
where the Km(qv) terms in Φr decay exponentially with v. Because of this exponential dependence at large v, to good
approximation it suffices to expand the terms αm(q), Jm(qu′),Km(qv′) around q = 0. The only non-trivial expansions
occur for the terms αm(q) and are given by

α0(q) =
1

2

(

1 − ǫ2
ǫ1

)

q2v2
0 + O(q4), (C1)

α1(q) =
1

2

ǫ1 − ǫ2
ǫ1 + ǫ2

q2v2
0 + O(q4), · · · (C2)

These expansions allow for exact evaluations of the integral. It can be verified that the dipole contributions to Φr

originate from the m = 0, 1 terms in the sum, which are readily found to be

Φ(m=0)
r (r, r′) ≈ 1

4πǫ0ǫ1
v2
0

(

1 − ǫ2
ǫ1

)

4(v2 − u2)

(u2 + v2)3
ln
v

v′
+ δΦ(r), (C3)

Φ(m=1)
r (r, r′) ≈ 1

4πǫ0ǫ1
cos(φ− φ′)

ǫ1 − ǫ2
ǫ1 + ǫ2

v2
0u

′

v′
8uv

(u2 + v2)3
. (C4)
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Here δΦ is a complicated function, but most importantly contains no dependence on r′. Recalling that the pseudopo-
tentials derived above correspond to a point charge source, we can immediately obtain the potentials due to a dipole
p0e

−iωt at r′ by applying the operator (p0 · ∇′) to these expressions. In parabolic coordinates the gradient operator
is given by

∇ =
1√

u2 + v2

(

û
∂

∂u
+ v̂

∂

∂v

)

+
1

uv
φ̂
∂

∂φ
, (C5)

and for a dipole located on the z-axis (u′ = 0), we find that

Φ
(m=0)
dip,r ≈ − 1

4πǫ0ǫ1

(

1 − ǫ2
ǫ1

)

v2
0

v′2
(v̂ · r)(p0 · v̂)

r3
, (C6)

Φ
(m=1)
dip,r ≈ 1

4πǫ0ǫ1

ǫ1 − ǫ2
ǫ1 + ǫ2

v2
0

v′2
(p0 − v̂(p0 · v̂)) · r

r3
. (C7)

From these expressions one can immediately identify the induced dipole moments in the nanotip,

δp = −v̂p0
v2
0

v′2

(

1 − ǫ2
ǫ1

)

, (p0 ‖ ẑ) (C8)

δp = ûp0
ǫ1 − ǫ2
ǫ1 + ǫ2

v2
0

v′2
, (p0 ⊥ ẑ) (C9)

and arrive at the radiative decay rates given in Eq. (47).
The leading term for the non-radiative decay rate is found by calculating the divergence in the reflected field Er(r

′, r′)
as v→v0. The reflected field Er = −∇(p0 · ∇′)Φr is in general difficult to evaluate, but simplifies considerably for a
dipole located on-axis (u′ = 0) due to the presence of the Jm(qu′) term in Φr, given in Eq. (42). The operation ∇′

causes terms like Jm(0) and J ′
m(0) to appear in Er, which are non-zero only when m = 0 and m = 1, respectively.

This immediately leads to the expressions

p0 ·Er(r
′, r′) = − p2

0

4πǫ0ǫ1

∫ ∞

0

dq
q3

v′2
α1(q)K

2
1 (qv′), (p0 ⊥ ẑ)

p0 ·Er(r
′, r′) = − p2

0

2πǫ0ǫ1

∫ ∞

0

dq
q3

v′2
α0(q)K

2
1 (qv′), (p0 ‖ ẑ) (C10)

which were given in Eq. (46). Examining further the solutions to α0,1, it can easily be shown that their asymptotic
expansions in the limit qv0 ≫ 1 take the form

α0,1(q)≈
1

π

ǫ1 − ǫ2
ǫ1 + ǫ2

e2qv0 . (qv0≫1) (C11)

At the same time, in the limit qv′ ≫ 1 the behavior of K2
1 is given by K2

1 (qv′) ≈ (π/2qv′)e−2qv′

, and thus as v′→v0
the integrands of Eq. (C10) exhibit very long tails due to the presence of terms ∼e−2q(v′−v0) at large q. The tail is
the origin of the divergence that we expected on physical grounds. Using these expansions as well as the fact that
the decay rate is proportional to Im (p0 ·E), the integrals can be evaluated exactly and yield the non-radiative decay
rates given in Eq. (48).

APPENDIX D: BOUNDARY ELEMENT METHOD

Our numerical implementation of the boundary element method (BEM) closely follows the method derived in [41].
Here we briefly outline the main ideas of BEM while referring the reader to [41] for more details, and we discuss the
key elements of our implementation.

We assume that our system contains a set of known, time-harmonic source charges and currents ρext,jext in the
presence of some scattering dielectric body whose surface is denoted S (although we discuss one body here, BEM is
easily generalizable to treat multiple scatterers). In the case of interest, S represents the surface of a metallic nanotip,
while the external source corresponds to an oscillating point dipole p0e

−iωt at some location r′. For simplicity we
also assume that we are working with non-magnetic media, and we denote by ǫj (j = 1, 2) the dimensionless electric
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permittivities outside and inside S, respectively. The underlying principle behind BEM is that the scalar and vector
potentials φj(r) and Aj(r) in each region can be written (in the Lorenz gauge) in the form

φj(r) =
1

4πǫ0ǫj

∫

dr′Gj(r − r′)ρext(r
′) +

1

4πǫ0ǫj

∫

S

dsGj(r − s)σj(s), (D1)

Aj(r) =
µ0

4π

∫

dr′Gj(r − r′)jext(r
′) +

µ

4π

∫

S

dsGj(r − s)hj(s), (D2)

Gj(r) =
eikjr

r
, (D3)

where Gj is the Green’s function in a medium of uniform ǫj, and kj =
√
ǫj(ω/c). Physically, the equations above state

that the fields in region j can be described as a result of the combination of the external sources and some effective
surface charge and current distributions σj ,hj on S. In general, these effective distributions do not have physical
significance; for example, they do not correspond to actual charges and currents, and the distributions in region 1
and region 2 are not necessarily equal (e.g., σ1(s) 6= σ2(s)). The values of σj ,hj are not known initially, but a set
of linear integral equations for these distributions results from enforcing various boundary conditions for the scalar
and vector potentials at S. In particular, φ, A, D⊥, and H‖ must be continuous at the boundary. To calculate the
distributions numerically, if the boundary S is finite, one can mesh up the surface into a finite number of grid points.
Assuming that σj ,hj are constant over each grid point, the linear integral equations become a set of linear equations
in the values of σj ,hj that can be solved straightforwardly. Once these distributions are known, the potentials and
then the fields E,H can be calculated.

In our problem of interest, we assume that the dipole is located on the z-axis and oriented along ẑ, while the
nanotip is described by a paraboloid of revolution around the z-axis. Due to the axial symmetry of the system, BEM
simulations are advantageous because one only needs to calculate the unknown distributions along one dimension
instead of over the entire two-dimensional surface S. At the same time, the source is a dipole oscillating at constant
frequency, and thus the external charges and currents are calculated quite easily. In BEM (at least in the current
formulation), it is necessary that the nanotip surface S be finite, and we implement this numerically by tapering and
rounding off the nanotip far from the region of interest. In general, any termination can result in some back-reflection
of the guided plasmon, and this results in some small oscillations of the fields due to interference with the forward-
propagating plasmon, as barely seen, e.g., in Fig. 4. In our simulations, the reflected amplitude is kept to within a
few percent. Very fine meshes were used to ensure accuracy; in most of our simulations, for example, the spacing
between points in the regions of constant R was approximately λpl/400.

APPENDIX E: DERIVATION OF COUPLED-MODE EQUATIONS

In this section we derive the equations of evolution for two electromagnetically coupled systems based on Lorentz
reciprocity.

First we derive the Lorentz reciprocity equation generally. Assuming non-magnetic media, suppose that
{E1(r),H1(r), ǫ1(r)} and {E2(r),H2(r), ǫ2(r)} separately satisfy Maxwell’s Equations. At this point the systems
1, 2 and their field solutions are not necessarily related to each other at all. In the following we assume that all fields
E(r, t) = E(r)e−iωt,H(r, t) = H(r)e−iωt have harmonic time dependence. Using the vector identity

∇ · (a × b) = b · (∇× a) − a · (∇× b), (E1)

and the curl relations of Maxwell’s Equations we can write

∇ · (E1 × H∗
2) = H∗

2 · (∇× E1) − E1 · (∇× H∗
2)

= H∗
2 · (iωµ0H1) − E1 · (iωǫ0ǫ∗2E∗

2), (E2)

and similarly

∇ · (E∗
2 × H1) = H1 · (∇× E∗

2) − E∗
2 · (∇× H1)

= H1 · (−iωµ0H
∗
2) − E∗

2 · (−iωǫ0ǫ1E1). (E3)

Adding up Eqs. (E2) and (E3) yields the equation for Lorentz reciprocity,

∇ · (E1 × H∗
2 + E∗

2 × H1) = iωǫ0E1 ·E∗
2(ǫ1(r) − ǫ∗2(r)). (E4)
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We now derive coupled-mode equations for two waveguides based on the Lorentz reciprocity equation above. This
derivation closely follows that of [47]. We emphasize that the nature of the waveguides can be quite general, e.g., they
can be any type of normal dielectric or plasmon waveguide. We let the indices µ, ν = a, b refer to the system consisting
of waveguide a without the presence of system b, and b the system consisting of waveguide b without the presence of
a. We also assume that the surrounding dielectrics for systems a, b are the same, i.e., ǫa(r = ∞) = ǫb(r = ∞), and
that the waveguides are co-propagating along the z-direction. It is assumed that the total electric field for the system
consisting of waveguides a and b together can be written as

ET (r) =
∑

ν=a,b

Cν(z)Eν(r), (E5)

with a similar expression for H. That is, we assume that the total field can be written as a linear superposition of
the unperturbed modes of systems a, b. For the case where systems a, b each have one allowed mode, the index ν
refers to these unperturbed modes. In general, when a, b have Na,b allowed unperturbed modes, ν is understood to
be an index that covers all of these modes. We can derive exact equations of motion for Cν(z) by using Eq. (E4).
Specifically, we will let the index 1 = T in Eq. (E4) refer to the total fields ET (r),HT (r) and the dielectric profile of
the combined system ǫT (r), while we will let the index 2 = µ refer to any one of the allowed, unperturbed modes of
systems a, b. Substituting this into Eq. (E4) yields

∇ · (ET × H∗
µ + E∗

µ × HT ) = iωǫ0ET ·E∗
µ(ǫT (r) − ǫ∗µ(r)), (E6)

or
∑

ν=a,b

∇ ·
(

Cν(z)Eν × H∗
µ + Cν(z)E∗

µ × Hν

)

= iωǫ0
∑

ν=a,b

Cν(z)Eν · E∗
µ

(

ǫT (r) − ǫ∗µ(r)
)

. (E7)

Applying Stokes’ Theorem to this result gives

∂

∂z

∑

ν=a,b

∫

d2
ρ
(

Cν(z)Eν × H∗
µ + Cν(z)E∗

µ × Hν

)

· ẑ = iωǫ0
∑

ν=a,b

Cν(z)

∫

d2
ρ Eν ·E∗

µ

(

ǫT (r) − ǫ∗µ(r)
)

. (E8)

The left-hand side can be further simplified,

LHS =
∂

∂z

∑

ν=a,b

∫

d2
ρ
(

Cν(z)Eν × H∗
µ + Cν(z)E∗

µ × Hν

)

· ẑ (E9)

=
∑

ν=a,b

dCν

dz

(
∫

d2
ρ (Eν × H∗

µ + E∗
µ × Hν) · ẑ

)

+ Cν(z)

(

∂

∂z

∫

d2
ρ (Eν × H∗

µ + E∗
µ × Hν) · ẑ

)

(E10)

=
∑

ν=a,b

dCν

dz

(
∫

d2
ρ (Eν × H∗

µ + E∗
µ × Hν) · ẑ

)

+ Cν(z)

(

iωǫ0

∫

d2
ρ Eν · E∗

µ(ǫν(r) − ǫ∗µ(r))

)

, (E11)

where we have applied Stokes’ Theorem on Eq. (E4) to get the last line.
Substituting Eq. (E11) back into Eq. (E8) yields a set of Na +Nb coupled, first-order differential equations:

∑

ν

dCν

dz
Pνµ(z) = −iωǫ0

∑

ν

Cν(z)Kνµ(z), (E12)

Pνµ(z) ≡
∫

d2
ρ (Eν × H∗

µ + E∗
µ × Hν) · ẑ, (E13)

Kνµ(z) ≡
∫

d2
ρ Eν · E∗

µ(ǫν(r) − ǫT (r)). (E14)

We emphasize that these coupled-mode equations are exact within the ansatz given by Eq. (E5).

APPENDIX F: RADIATIVE SCATTERING

Suppose that in the presence of roughness, the first-order scattered field Ez is given by Eq. (64). Using the
expressions derived in Eq. (3) for the unperturbed, incident plasmon field, and letting k‖ denote the unperturbed
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plasmon wavevector, the total (incident plus scattered) fields to first order in p are given by

Etotal
1 =

(

ik‖k1⊥

k2
1

b1H
′
0(k1⊥ρ)e

ik‖z + p

∫ ∞

−∞

dh‖
ih‖h1⊥

k2
1

H ′
0(h1⊥ρ)e

ih‖zA(h‖)

)

ρ̂

+

(

k2
1⊥

k2
1

b1H0(k1⊥ρ)e
ik‖z + p

∫ ∞

−∞

dh‖
h2

1⊥

k2
1

H0(h1⊥ρ)e
ih‖zA(h‖)

)

ẑ

Etotal
2 =

(

ik‖k2⊥

k2
2

b2J
′
0(k2⊥ρ)e

ik‖z + p

∫ ∞

−∞

dh‖
ih‖h2⊥

k2
2

J ′
0(h2⊥ρ)e

ih‖zB(h‖)

)

ρ̂

+

(

k2
2⊥

k2
2

b2J0(k2⊥ρ)e
ik‖z + p

∫ ∞

−∞

dh‖
h2

2⊥

k2
2

J0(h2⊥ρ)e
ih‖zB(h‖)

)

ẑ

Htotal
1,φ =

1

ωµ0

[

ik1⊥b1H
′
0(k1⊥ρ)e

ik‖z + p

∫ ∞

−∞

dh‖ ih1⊥H
′
0(h1⊥ρ)e

ih‖zA(h‖)

]

Htotal
2,φ =

1

ωµ0

[

ik2⊥J
′
0(k2⊥ρ)b2e

ik‖z + p

∫ ∞

−∞

dh‖ ih2⊥J
′
0(h2⊥ρ)e

ih‖zB(h‖)

]

. (F1)

The boundary condition equations in Eq. (65) can be solved by plugging in the fields above, carefully expanding
the equations as a power series in p, and then solving for each order of p, utilizing the expansions

t̂ = ẑ + p
dζ

dz
ρ̂+ O(p2),

Fi,m(ki⊥ρ0) = Fi,m(ki⊥R) + pζki⊥F
′
i,m(ki⊥R) + O(p2),

Fi,m (hi⊥ρ0) = Fi,m(hi⊥R) + pζhi⊥F
′
i,m(hi⊥R) + O(p2), (F2)

where F1,m(x) = Hm(x) and F2,m(x) = Jm(x). The resulting O(p0) equations are trivially satisfied by the plasmon
fields of a smooth nanowire, while the O(p) equations are found to be

∫ ∞

−∞

dh‖

[

h2
1⊥

k2
1

H0(h1⊥R)A(h‖) −
h2

2⊥

k2
2

J0(h2⊥R)B(h‖)

]

eih‖z =

[

k3
2⊥

k2
2

b2ζ(z)J
′
0(k2⊥R) − k3

1⊥

k2
1

b1ζ(z)H
′
0(k1⊥R) +

ik‖k2⊥

k2
2

b2
dζ

dz
J ′

0(k2⊥R) − ik‖k1⊥

k2
1

b1
dζ

dz
H ′

0(k1⊥R)

]

eik‖z

∫ ∞

−∞

dh‖
[

h1⊥H
′
0(h1⊥R)A(h‖) − h2⊥J

′
0(h2⊥R)B(h‖)

]

eih‖z =

[

k2
2⊥b2ζ(z)J

′′
0 (k2⊥R) − k2

1⊥b1ζ(z)H
′′
0 (k1⊥R)

]

eik‖z. (F3)

Here we assume that the metal inherently has no losses, i.e., Im ǫ2 = 0, such that k‖ is purely real. Then, by plugging
in the Fourier transform of ζ(z) given in Eq. (66), the equations above become purely algebraic. It is tedious but
straightforward to show that the solutions are given by Eq. (67), with the coefficients f(h‖) and g(h‖) defined via

f(h‖) =
h2⊥NJ0(h2⊥R) − k2

2M(h‖)J
′
0(h2⊥R)

H0(h1⊥R)J ′
0(h2⊥R)h1⊥k2

2 −H ′
0(h1⊥R)J0(h2⊥R)h2⊥k2

1

g(h‖) =
h1⊥NH0(h1⊥R) − k2

1M(h‖)H
′
0(h1⊥R)

H0(h1⊥R)J ′
0(h2⊥R)h1⊥k2

2 −H ′
0(h1⊥R)J0(h2⊥R)h2⊥k2

1

M(h‖) =

(

k3
1⊥

k2
1

− k‖k1⊥(h‖ − k‖)

k2
1

)

b1H
′
0(k1⊥R) −

(

k3
2⊥

k2
2

− k‖k2⊥(h‖ − k‖)

k2
2

)

b2J
′
0(k2⊥R)

N = b1k
2
1⊥H

′′
0 (k1⊥R) − b2k

2
2⊥J

′′
0 (k2⊥R). (F4)

To evaluate the expression for Γrad,rough in Eq. (74), it is convenient to normalize the plasmon fields using Eq. (29),
in which case the denominator of (74) becomes h̄ω/4L and the normalization coefficient for the field outside the wire

is given by b1≈
√

h̄ωk4

0
ǫ2
1
R2

ǫ0Ṽ C4

−1
L

, as derived in Sec. III B. Then, using the relationships k‖≈C−1/R, ki⊥≈iC−1/R one can

calculate the leading terms of f(h‖) as R→0,

f(h‖) ≈
h2⊥b1(C−1/R)2φ

−2ik2
1h2⊥/πh1⊥R

, (F5)
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where we have defined φ≡(b2/b1)J
′′
0 (iC−1) − H ′′

0 (iC−1). In the equation above we have explicitly given the leading
terms of the numerator and denominator of f(h‖). The ratio b1/b2 is given in Eq. (4), which in the nanowire limit
results in the simplification of φ given in Eq. (76).

APPENDIX G: NON-RADIATIVE SCATTERING

The elements of the matrices Mi and vectors vi appearing in the matrix integral equation (85) in the presence of
surface roughness are given by

M0(h) =

(

K̃m(hR) −Ĩm(hR)

hǫ1K̃
′
m(hR) −hǫ2Ĩ ′m(hR)

)

, (G1)

M1(h, q) =

(

qK̃ ′
m(qR) −qĨ ′m(qR)

ǫ1(q
2K̃ ′′

m(qR) + q(h− q)K̃m(qR)) −ǫ2(q2Ĩ ′′m(qR) + q(h− q)Ĩm(qR))

)

ei(h−q)z′

, (G2)

M2(h, q, q
′) =

(

q2

2 K̃
′′
m(qR) − q2

2 Ĩ
′′
m(qR)

M21
2 (h, q, q′) M22

2 (h, q, q′)

)

ei(h−q)z′

, (G3)

M21
2 (h, q, q′) = ǫ1

(

q3

2
K̃ ′′′

m(qR) + q2(h− q − q′)K̃ ′
m(qR) +

1

2
qq′(h− q − q′)K̃ ′

m(qR)

)

, (G4)

M22
2 (h, q, q′) = −ǫ2

(

q3

2
Ĩ ′′′m (qR) + q2(h− q − q′)Ĩ ′m(qR) +

1

2
qq′(h− q − q′)Ĩ ′m(qR)

)

, (G5)

v0(h) = −
(

Ĩm(hR)

hĨ ′m(hR)

)

K̃m(hρ′), (G6)

v1(h, q) = −
(

qĨ ′m(qR)

q2Ĩ ′′m(qR) + q(h− q)Ĩm(qR)

)

K̃m(qρ′)ei(h−q)z′

, (G7)

v2(h, q, q
′) = −

(

q2

2 Ĩ
′′
m(qR)

q3

2 Ĩ
′′′
m(qR) + q2(h− q − q′)Ĩ ′m(qR) + 1

2qq
′(h− q − q′)Ĩ ′m(qR)

)

K̃m(qρ′)ei(h−q)z′

. (G8)
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FIG. 1: a. An emitter coupled to a nanowire is optically excited and decays with high probability into the plasmon modes of
the nanowire. A single photon source is created by evanescently coupling the nanowire to a nearby dielectric waveguide over
a length Lex. The single photon source can potentially be uni-directional, e.g., by capping one end of the waveguide with a
reflective surface. b. An internal-level scheme that allows for shaping of the outgoing single photon pulses. An emitter that
starts in state |s〉 is coupled to excited state |e〉 via a time-dependent external field Ω(t). We assume that the excited state
|e〉 is coupled to state |g〉 via the plasmon modes, causing |e〉 to decay into |g〉 with high probability, while simultaneously
generating a single photon in the plasmon modes. The shape of the photon wavepacket is determined by Ω(t). c. A similar
scheme for single photon generation using an emitter coupled to a nanotip instead of a nanowire. Note that this scheme is
naturally uni-directional, as the generated plasmons propagate in a single direction.
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FIG. 2: Allowed plasmon modes k‖ as a function of R for a silver nanowire embedded in a surrounding dielectric ǫ1 = 2, for
frequency corresponding to a vacuum wavelength λ0 = 1 µm and room temperature. The fundamental (m = 0) mode, in
black, exhibits a 1/R dependence, while all other modes are effectively cut off as R→0. Inset: the propagative losses for the
fundamental mode, characterized by the ratio Re k‖/Im k‖, for the same parameters.

Roughness parameters k0R = 0.1 (R≈16 nm) k0R = 0.2 (R≈32 nm) k0R = 0.3 (R≈48 nm)

a = 0.1R, δ = 0.05R (s = 0.5) 0.09% 0.5% 1.4%

a = 0.1R, δ = 0.1R (s = 1) 0.4% 1.9% 5.6%

a = R, δ = 0.05R (s = 0.05) 0.9% 4.5% 12%

a = 5R, δ = 0.05R (s = 0.01) 2.8% 8.0% 10%

a = 10R, δ = 0.1R (s = 0.01) 7.0% 14% 16%

a = 20R, δ = 0.1R (s = 0.005) 0.9% 2.9% 3.8%

a = 25R, δ = 0.1R (s = 0.004) 0.3% 1.3% 1.8%

TABLE I: Losses due to radiative scattering off of surface roughness for nanowires of varying sizes and roughness parameters.
The scattering rates are given in terms of the percentage increase in Im k‖ that one would expect over the values for a smooth
nanowire.
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FIG. 3: a. Solid line: Probability of error, PE = 1 − Γpl/(Γ
′ + Γpl), in which an emitter fails to emit into the fundamental

plasmon mode for a nanowire, plotted as a function of R and optimized over the emitter position. Dashed line: optimized PE

vs. curvature parameter w for a nanotip. Dotted line: effective probability of error, P̃E = 1 − Γ̃pl(R)/(Γ′ + Γpl) for emission

into a nanotip and successful propagation to final radius R. Solid points: effective error probability P̃E for a nanotip, calculated
numerically through boundary element method. Inset: same plot, zoomed in near R,w = 0. b. Contour plot of log

10
PE for a

nanowire, as functions of R and d/R. c. Contour plot of log
10

PE for a nanotip, as functions of w and d/w.

Roughness parameters ∆(Re C̃−1) ∆(Im C̃−1/Re C̃−1)

a = 0.1R, δ = 0.01R (s = 0.1) 0.2% 0.2%

a = 0.1R, δ = 0.05R (s = 0.5) 7.5% 6.8%

a = R, δ = 0.01R (s = 0.01) 0.03% 1.0%

a = R, δ = 0.05R (s = 0.05) 0.9% 26%

a = R, δ = 0.1R (s = 0.1) 3.5% 110%

a = 10R, δ = 0.01R (s = 0.001) > 0.01% 2.7%

a = 10R, δ = 0.05R (s = 0.005) 0.2% 67%

a = 10R, δ = 0.1R (s = 0.01) 0.8% 270%

TABLE II: Losses and wavevector shifts due to non-radiative scattering off of surface roughness for nanowires with varying
roughness parameters. The shifts in Re C̃−1 and changes in loss parameters Im C̃−1/Re C̃−1 are given in terms of percentage
increase over the corresponding values for a smooth nanowire.
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FIG. 4: Numerically calculated fields due to a dipole emitter near a conducting nanotip, obtained by boundary element method.
a. The energy flux |Re(E×H∗)|, in arbitrary units. The position of the emitter is denoted by the blue circles, while the boundary
of the nanotip is given by the dotted lines . The plots shown are for a final nanotip radius of k0R = 0.3, curvature parameter
k0w = 0.022, and emitter positions k0d = 0.002, 0.2, 0.7. It can be seen that both the total spontaneous emission rate Γtotal and
the emission rate into plasmons increase as the emitter is brought closer to the nanotip. b. The quantity |Re(E×H∗)|/Γtotal ,
for the same parameters. This quantity is proportional to the energy flux normalized by the total power output of the emitter.
The k0d = 0.002 plot is mostly dark, indicating that most of the decay is into non-radiative channels. The k0d = 0.2 case is
characterized by bright spots along the entire edge of the nanotip, which indicates efficient plasmon excitation. The k0d = 0.7
case exhibits the typical lobe pattern associated with radiative decay of a dipole.
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and surrounding permittivity ǫ1 = 2, plotted as a function of core radius Rg.
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FIG. 6: a. Optimized efficiencies of single photon generation vs. R. We have assumed that coupling to waveguide modes other
than the fundamental mode is negligible, i.e., the waveguide is effectively in the single-mode regime. Solid line: theoretical
efficiency using a nanowire. Dotted line: theoretical efficiency using a nanotip. Solid points: nanotip efficiency based on
boundary element method simulations, combined with coupled-mode equations. b. Optimal coupling length Lex for a nanotip
as a function of R. Here Lex is given in units of the plasmon wavelength λpl at that particular R.

FIG. 7: The plasmon dissipation rate due to radiative scattering off of surface roughness, Γrad,rough/s2ω, as functions of wire

radius R and correlation length a/R. The numbers are calculated for a silver nanowire at λ0 = 1 µm and ǫ1 = 2.
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